日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做Project 1: 3D printer materials estimation

時間:2024-02-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:self-signed certificate.代做、代寫Java/c++設計編程
  • 下一篇:代做CSE 6242、Java/c++編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产一区美女| 欧美在现视频| 亚洲女同精品视频| 狠狠色丁香婷综合久久| 久久久在线视频| 欧美大片在线观看一区二区| 欧美小视频在线观看| 欧美日韩国产综合视频在线观看| 狠狠色狠色综合曰曰| 亚洲欧美欧美一区二区三区| av成人老司机| 欧美激情一区三区| 亚洲久久成人| 黄色成人免费网站| 亚洲深夜福利在线| 欧美午夜美女看片| 欧美日韩大陆在线| 国产精品国产三级国产普通话99| 久久三级福利| 新狼窝色av性久久久久久| 亚洲免费精彩视频| 久久亚洲精品一区| 亚洲一区在线视频| 亚洲黄色尤物视频| 亚洲一区二区三区高清不卡| 一本久道综合久久精品| 欧美不卡一卡二卡免费版| 欧美成人免费一级人片100| 国内自拍亚洲| 国产精品久久看| 亚洲女同性videos| 欧美激情在线狂野欧美精品| 亚洲国产老妈| 国产欧美婷婷中文| 国产欧美一区二区三区视频| 亚洲美女网站| 亚洲精品中文在线| 欧美日本精品在线| 一区二区欧美日韩| 香蕉乱码成人久久天堂爱免费| 午夜视频一区| 欧美日韩裸体免费视频| 在线视频欧美日韩精品| 国产精品国产馆在线真实露脸| 久久九九有精品国产23| 国产亚洲精品久久飘花| 欧美屁股在线| 国产精品视频免费观看www| 国产人成精品一区二区三| 在线视频国内自拍亚洲视频| 久久精品女人| 久久综合九色欧美综合狠狠| 国产情侣一区| 亚洲日本无吗高清不卡| 黑人巨大精品欧美一区二区小视频| 亚洲欧美日韩另类精品一区二区三区| 久久久久国产精品午夜一区| 亚洲免费精品| 亚洲美女在线看| 亚洲在线播放电影| 性欧美暴力猛交69hd| 午夜精品电影| 久久综合伊人77777蜜臀| 国产精品yjizz| 在线播放国产一区中文字幕剧情欧美| 另类天堂视频在线观看| 久久久久久高潮国产精品视| 亚洲一区二区三区高清| 久久久精品一品道一区| 日韩一区二区精品在线观看| 午夜精品久久久久久久99樱桃| 亚洲美女黄色| 亚洲一区一卡| 国产精品大片免费观看| 亚洲精品一品区二品区三品区| 亚洲乱码精品一二三四区日韩在线| 国外成人在线视频网站| 国产欧美日韩精品专区| 国产精品自拍三区| 国产精品日韩欧美综合| 欧美午夜久久| 免费永久网站黄欧美| 久久久精品国产一区二区三区| 性8sex亚洲区入口| 国产精品一区视频网站| 国产精品入口日韩视频大尺度| 欧美日韩亚洲一区三区| 在线精品视频在线观看高清| 日韩亚洲视频| 99视频精品| 欧美伊人精品成人久久综合97| 国产精品超碰97尤物18| 久久久91精品国产一区二区三区| 亚洲欧美国产日韩中文字幕| 国产视频一区免费看| 久久久久国产精品午夜一区| 国产精品日本一区二区| 久久综合色播五月| 欧美日产一区二区三区在线观看| 欧美三级视频在线观看| 久久精品欧美日韩| 在线看国产日韩| 久久久免费av| 免费欧美在线| 国产一级久久| 欧美在线视频一区二区三区| 最近中文字幕mv在线一区二区三区四区| 亚洲国产精品美女| 久久精品视频免费播放| 欧美另类视频| 在线观看日韩av电影| 欧美视频免费在线| 麻豆精品网站| 99国产精品视频免费观看| 美脚丝袜一区二区三区在线观看| 国产精品第2页| 一区二区日韩免费看| 免费看成人av| 国产婷婷精品| 久久久久久网址| 久热爱精品视频线路一| 欧美freesex交免费视频| 亚洲国产成人午夜在线一区| 亚洲第一偷拍| 国产精品三级视频| 亚洲国产美女精品久久久久∴| 国产一区二区日韩精品| 久久最新视频| 欧美一区2区视频在线观看| 狠狠色丁香婷婷综合影院| 国产日产欧产精品推荐色| 国产视频精品免费播放| 欧美综合二区| 国产精品视频精品| 中文成人激情娱乐网| 欧美与欧洲交xxxx免费观看| 久久国产精品72免费观看| 在线播放日韩欧美| 亚洲精品国偷自产在线99热| 亚洲成人在线视频网站| 美女国产精品| 亚洲精品专区| 欧美母乳在线| 欧美丰满高潮xxxx喷水动漫| 亚洲欧美成人一区二区在线电影| 一区二区三区在线免费视频| 国产欧美一区二区三区视频| 欧美午夜视频在线观看| 国产日韩欧美夫妻视频在线观看| 久久久噜噜噜久噜久久| 欧美日韩国产免费| 老司机成人在线视频| 久久躁狠狠躁夜夜爽| 久久久综合激的五月天| 亚洲男女自偷自拍图片另类| 欧美日韩国产综合在线| 一区二区三区免费看| 国产精品久久久久一区二区三区共| 欧美国产大片| 国产原创一区二区| 亚洲精品日韩激情在线电影| 国产欧美日韩视频一区二区| 欧美精品首页| 91久久精品国产91性色|