日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做Project 1: 3D printer materials estimation

時間:2024-02-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:self-signed certificate.代做、代寫Java/c++設計編程
  • 下一篇:代做CSE 6242、Java/c++編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    釘釘簽到打卡位置修改神器,2026怎么修改定位在范圍內
    釘釘簽到打卡位置修改神器,2026怎么修改定
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
  • 短信驗證碼 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美激情精品久久久久久免费印度| 欧美mv日韩mv国产网站| 女同一区二区| 久久超碰97人人做人人爱| 国产在线麻豆精品观看| 国产精品视频九色porn| 亚洲天堂av在线免费| 国产在线精品成人一区二区三区| 欧美日韩精品福利| 午夜亚洲视频| 狠狠久久综合婷婷不卡| 美女网站在线免费欧美精品| 欧美一区二区视频网站| 欧美大尺度在线观看| 欧美一站二站| 亚洲小说欧美另类婷婷| 亚洲日本va午夜在线影院| 久久精品成人一区二区三区蜜臀| 久久精品视频免费观看| 日韩亚洲国产欧美| 国产一区香蕉久久| 国产精品久久久久久模特| 欧美激情综合五月色丁香小说| 国产一区二区三区在线播放免费观看| 欧美日韩在线观看一区二区三区| 男男成人高潮片免费网站| 国产视频一区欧美| 亚洲欧美欧美一区二区三区| 亚洲一区二区在线| 国产精品伦理| 国语自产偷拍精品视频偷| 欧美午夜无遮挡| 性色av一区二区三区在线观看| 极品日韩av| 最新日韩精品| 在线成人激情| 99精品视频免费全部在线| 亚洲日韩中文字幕在线播放| 亚洲成人影音| 国内成人精品2018免费看| 欲香欲色天天天综合和网| 国产精品青草久久久久福利99| 韩国一区二区三区美女美女秀| 亚洲经典在线看| 久久精品国产第一区二区三区最新章节| 国产精品自拍三区| 农夫在线精品视频免费观看| 在线日韩av永久免费观看| 亚洲视频在线看| 亚洲午夜羞羞片| 欧美一区二区三区婷婷月色| 久久综合五月| 久久精品青青大伊人av| 欧美激情综合五月色丁香小说| 欧美另类综合| 狂野欧美激情性xxxx| 麻豆成人在线| 亚洲性图久久| 午夜精品国产精品大乳美女| 国产精品久久久久久久久久免费看| 亚洲高清在线播放| 亚洲少妇最新在线视频| 亚洲中无吗在线| 国产日韩久久| 欧美尤物巨大精品爽| 黄色成人在线观看| 欧美日韩一区综合| 欧美电影电视剧在线观看| 欧美午夜视频在线| 在线成人www免费观看视频| 香蕉成人伊视频在线观看| 国产精品大片免费观看| 免费精品视频| 国产深夜精品| 亚洲深夜福利| 亚洲国产精品悠悠久久琪琪| 久久精品免费看| 麻豆九一精品爱看视频在线观看免费| 欧美日韩91| 国产在线精品一区二区中文| 一本久道久久综合婷婷鲸鱼| 欧美日韩1区2区3区| 精品粉嫩aⅴ一区二区三区四区| 欧美日韩中文字幕在线视频| 久久久久久久久岛国免费| 国内成人精品2018免费看| 欧美午夜精品伦理| 亚洲精品视频一区二区三区| 欧美在线在线| 久久精品国产77777蜜臀| 国内精品久久久久影院 日本资源| 欧美三级日本三级少妇99| 亚洲一级在线| 亚洲乱码一区二区| 99国产精品久久久| 午夜精品福利在线| 久久精品水蜜桃av综合天堂| 亚洲欧洲精品天堂一级| 国产精品免费视频观看| 国产精品成人一区二区| 国产精品一区二区a| 欧美日韩成人在线观看| 久久精品成人一区二区三区| 久久久亚洲人| 亚洲成人原创| 午夜久久黄色| 国模叶桐国产精品一区| 国产精品久久久久高潮| 免费91麻豆精品国产自产在线观看| 欧美三级电影精品| 美女啪啪无遮挡免费久久网站| 99在线热播精品免费99热| 欧美午夜片在线观看| 亚洲精品国产精品国自产观看浪潮| 亚洲影院高清在线| 欧美亚洲成人精品| 久久亚洲精选| 欧美激情1区| 99v久久综合狠狠综合久久| 欧美日韩精品一区二区天天拍小说| 一本色道久久精品| 国产精品99久久不卡二区| 久久国产精品久久w女人spa| 久久精品在线免费观看| 麻豆91精品91久久久的内涵| 一区二区三区欧美日韩| 欧美日韩网站| 亚洲国产日日夜夜| 亚洲精品自在在线观看| 久久中文字幕一区| 国产精品欧美久久久久无广告| 黄色亚洲免费| 99精品国产热久久91蜜凸| 国产精品v日韩精品v欧美精品网站| 久久精品91久久久久久再现| 久久av一区二区三区亚洲| 欧美激情视频一区二区三区不卡| 美女成人午夜| 欧美日韩日本网| 欧美精品日韩精品| 亚洲国产美女精品久久久久∴| 国产日韩精品一区二区三区| 国产精品久久久久久久久| 亚洲电影毛片| 国产精品theporn| 欧美在线观看视频一区二区三区| 韩国成人精品a∨在线观看| 日韩视频一区二区| 久久久精品国产99久久精品芒果| 亚洲大胆av| 国产亚洲综合在线| 国产精品剧情在线亚洲| 午夜精品久久久久久99热软件| 欧美午夜一区二区| 亚洲黄色尤物视频| 黑丝一区二区三区| 国产视频久久| 欧美sm重口味系列视频在线观看| 免费不卡视频| 亚洲在线播放电影| 欧美成熟视频| 国产一区亚洲一区| 99视频一区二区三区| 国产在线欧美|