日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MLDS 421: Data Mining

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Individual Assignment (100 points)

Instructions:

• Submit the paper review as a word or pdf file.

• Submit code as a Python notebook (.ipynb) file along with the HTML version.

• Write elegant code with substantial comments. If you have referred to or reused code from a website add the links as reference.

1. Paper Review – Following the guidelines review any one of the technical papers from Group2 (20)

2. Generate random multidimensional (n=1000, D >= 15) data using sklearn. (20)

• Build a K-means function from scratch (without using sklearn) and make assumptions to simplify the code as needed.

• Use the elbow method to find an appropriate value for k

• Use the silhouette plot to evaluate your clusters

• Re-cluster the data to see if you can improve your results

• Perform PCA on the original dataset and retain the most important PCs.

• Run K-means on the PCA output, compare results with respect to cluster quality and time taken

3. Using the data from 2, perform hyperparameter optimizations of the following clustering algorithms. (20)

• Agglomerative hierarchical clustering (number of clusters, linkage criterion)

• Density-based clustering (DBSCAN) (eps, minPts)

• Model-based clustering (GMM) (number of clusters)

4. Data mining and Cluster analysis of the following dataset (40)

https://data.cdc.gov/NCHS/NCHS-Injury-Mortality-United-States/vc9m-u7tv/about_data

The dataset contains the number of injury deaths per year by different injury intents from years 1999 to 2016 in the US. There are different groupings by age group, gender, race, and injury intent.

As a data science consultant, your goal is to mine the dataset and extract meaningful insights for your clients in the health care industry. The course of action is as follows:

• Review and understand the structure of the data.

o Columns are year, sex, age group, race, injury mechanism, injury intent, deaths, population, age specific rate, and the statistics of age specific rate

• Data Transformation

o For each year, group by age group, sex, or race and summarize data as needed for subsequent analysis.

• Exploratory Data Analysis (10)

o Create statistical summaries.

o Create boxplots, correlation/pairwise plots.

o Perform basic outlier analysis.

• Clustering (15)

o In a few lines create a plan that describes the 3-4 questions that are suitable for cluster analysis.

o List the various clustering algorithm(s) you’d use and why:

o E.g., K-means, K-medians, K-modes, Hierarchical methods, DBSCAN, etc.

o Apply the above algorithms to the filtered dataset based on your plan.

o Report on the quality of the clusters, pros/cons, and summarize your findings.

• Bias/Fairness Questions (15)

Data

o In the dataset under study, from a bias/fairness (b/f) perspective, there are 2 sensitive features: race and gender.

o Analyze the data by a combination (2) of features (sensitive and other). Example features to include in the analysis: location (county, state), and other features you consider relevant. Though these features may not be considered sensitive they can be a proxy for sensitive features.

o Determine feature groupings that are relevant for your analysis and explain your choices.

o Do you detect bias in the data?

o Present the results visually to show salient insights with respect to bias.

o Based on the EDA and your project objective, develop a hypothesis about where b/f issues could arise in the modeling (cluster analysis).

Modeling

o Based on your hypothesis, assess the fairness of your model/analysis by applying the fairness-related metrics that are available in any of the following tools: Python Fairlearn package, R Fairness/Fairmodels package, or other similar tools.

o Explain the reasoning for the groups that you selected for the fairness metrics.

o Compare the fairness metrics for the different groups.

o If you developed multiple models compare the fairness metrics for the models.

o Comment on the results.

o Suggest how the bias/fairness issues could be mitigated.

o Present the results visually to show salient insights.

Note: In the Fall Quarter you attended lectures on Bias/Fairness. Additionally, the following is a useful resource for analyzing b/f in data and modeling: Fairness & Bias Metrics
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫 Behavioural Economics ECON3124
  • 下一篇:代寫COMP1721、代做java程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产亚洲精品一区二区| 亚洲免费影视| 久久九九久久九九| 欧美日本不卡高清| 欧美va亚洲va日韩∨a综合色| 一本一道久久综合狠狠老精东影业| 亚洲欧美国产精品专区久久| 欧美日产国产成人免费图片| 亚洲乱码国产乱码精品精98午夜| 欧美日韩综合网| 欧美激情第二页| 亚洲视频高清| 国产精品日韩一区二区三区| 国产乱码精品一区二区三区不卡| 亚洲精品在线二区| 久久激情综合| 欧美视频精品在线观看| 国产乱码精品一区二区三| 国产一区二区欧美日韩| 久久精品二区| 午夜精品偷拍| 女女同性女同一区二区三区91| 亚洲影视九九影院在线观看| 最新中文字幕一区二区三区| 韩日欧美一区二区| 亚洲影院在线观看| 亚洲精品欧美精品| 最新热久久免费视频| 久久精品日产第一区二区三区| 午夜亚洲福利在线老司机| 亚洲高清三级视频| 国产精品美女诱惑| 亚洲人成网站999久久久综合| 国产日韩精品综合网站| 久久久久久一区二区三区| 亚洲国产网站| 国产精品视频yy9099| 欧美专区福利在线| 亚洲七七久久综合桃花剧情介绍| 一本色道久久综合亚洲精品不卡| 99视频精品免费观看| 在线精品一区二区| 国产三级欧美三级日产三级99| 亚洲第一天堂无码专区| 欧美制服第一页| 激情欧美日韩一区| 美女啪啪无遮挡免费久久网站| 亚洲高清久久| 亚洲美女少妇无套啪啪呻吟| 欧美精品日韩一区| 久久精品国产欧美激情| 亚洲第一级黄色片| 欧美区亚洲区| 久久国产福利国产秒拍| 国产精品美女www爽爽爽| 国产真实久久| 亚洲男人第一av网站| 在线亚洲+欧美+日本专区| 欧美大香线蕉线伊人久久国产精品| 国内精品福利| 激情懂色av一区av二区av| 欧美电影在线观看| 国产色婷婷国产综合在线理论片a| 欧美在线免费播放| 亚洲欧美在线磁力| 国产精品一香蕉国产线看观看| 欧美亚洲专区| 国产亚洲成年网址在线观看| 国产精品免费看久久久香蕉| 欧美三级乱人伦电影| 欧美激情无毛| 欧美亚洲视频在线观看| 99热精品在线| 欧美精品在线观看| 欧美网站大全在线观看| 欧美日本亚洲韩国国产| 欧美自拍偷拍午夜视频| 亚洲福利视频网站| 亚洲嫩草精品久久| 日韩视频精品在线观看| 亚洲一级黄色| 伊人久久av导航| 欧美涩涩视频| 99re6热在线精品视频播放速度| 亚洲午夜精品在线| 含羞草久久爱69一区| 国产亚洲a∨片在线观看| 久久婷婷国产综合国色天香| 欧美激情久久久久| 久久夜色精品亚洲噜噜国产mv| 在线视频精品一| 亚洲一区二区三区精品在线观看| 国产精品影音先锋| 久久精品亚洲国产奇米99| 亚洲国产另类 国产精品国产免费| 亚洲无线一线二线三线区别av| 狠狠色综合色区| 欧美一区二区精品久久911| 在线观看国产一区二区| 国产日韩免费| 久久久午夜电影| 亚洲视屏一区| 激情伊人五月天久久综合| 国产精品视频福利| 国产精品福利网| 国产精品视频网| 久久久久久久欧美精品| 最新日韩精品| 欧美精品日韩三级| 亚洲美女免费视频| 一区二区三区 在线观看视| 亚洲线精品一区二区三区八戒| 麻豆亚洲精品| 中文欧美字幕免费| 韩国久久久久| 国产在线成人| 国产亚洲精品一区二区| 一区二区三区精品| 在线观看一区二区精品视频| 久久一区二区精品| 国产日韩欧美夫妻视频在线观看| 亚洲在线观看视频网站| 国内久久婷婷综合| 国产精品a久久久久久| 亚洲女人天堂av| 夜夜躁日日躁狠狠久久88av| 亚洲看片一区| 香蕉亚洲视频| 久久精品国产第一区二区三区最新章节| 欧美日韩三级一区二区| 美国十次了思思久久精品导航| 99这里只有久久精品视频| 91久久精品美女高潮| 亚洲欧美综合精品久久成人| 午夜精品久久久久99热蜜桃导演| 国产精品嫩草99av在线| 麻豆精品国产91久久久久久| 欧美ed2k| 国产精品久久久久国产a级| 国产亚洲aⅴaaaaaa毛片| 在线中文字幕不卡| 久久精品一区二区三区中文字幕| 欧美精选午夜久久久乱码6080| 亚洲欧洲一级| 欧美色播在线播放| 欧美怡红院视频| 中文一区二区| 国产精品成人va在线观看| 欧美电影在线| 久久在线视频在线| 欧美激情综合在线| 国产日本欧美一区二区| 国产精品久久久久av| 国产日本欧洲亚洲| 极品尤物av久久免费看| 久久美女艺术照精彩视频福利播放| 久久露脸国产精品| 99精品视频免费观看| 99视频有精品| 欧美黑人一区二区三区| 午夜视频在线观看一区| 国产亚洲一级高清| 欧美寡妇偷汉性猛交| 一区二区三区导航|