日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MLDS 421: Data Mining

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Individual Assignment (100 points)

Instructions:

• Submit the paper review as a word or pdf file.

• Submit code as a Python notebook (.ipynb) file along with the HTML version.

• Write elegant code with substantial comments. If you have referred to or reused code from a website add the links as reference.

1. Paper Review – Following the guidelines review any one of the technical papers from Group2 (20)

2. Generate random multidimensional (n=1000, D >= 15) data using sklearn. (20)

• Build a K-means function from scratch (without using sklearn) and make assumptions to simplify the code as needed.

• Use the elbow method to find an appropriate value for k

• Use the silhouette plot to evaluate your clusters

• Re-cluster the data to see if you can improve your results

• Perform PCA on the original dataset and retain the most important PCs.

• Run K-means on the PCA output, compare results with respect to cluster quality and time taken

3. Using the data from 2, perform hyperparameter optimizations of the following clustering algorithms. (20)

• Agglomerative hierarchical clustering (number of clusters, linkage criterion)

• Density-based clustering (DBSCAN) (eps, minPts)

• Model-based clustering (GMM) (number of clusters)

4. Data mining and Cluster analysis of the following dataset (40)

https://data.cdc.gov/NCHS/NCHS-Injury-Mortality-United-States/vc9m-u7tv/about_data

The dataset contains the number of injury deaths per year by different injury intents from years 1999 to 2016 in the US. There are different groupings by age group, gender, race, and injury intent.

As a data science consultant, your goal is to mine the dataset and extract meaningful insights for your clients in the health care industry. The course of action is as follows:

• Review and understand the structure of the data.

o Columns are year, sex, age group, race, injury mechanism, injury intent, deaths, population, age specific rate, and the statistics of age specific rate

• Data Transformation

o For each year, group by age group, sex, or race and summarize data as needed for subsequent analysis.

• Exploratory Data Analysis (10)

o Create statistical summaries.

o Create boxplots, correlation/pairwise plots.

o Perform basic outlier analysis.

• Clustering (15)

o In a few lines create a plan that describes the 3-4 questions that are suitable for cluster analysis.

o List the various clustering algorithm(s) you’d use and why:

o E.g., K-means, K-medians, K-modes, Hierarchical methods, DBSCAN, etc.

o Apply the above algorithms to the filtered dataset based on your plan.

o Report on the quality of the clusters, pros/cons, and summarize your findings.

• Bias/Fairness Questions (15)

Data

o In the dataset under study, from a bias/fairness (b/f) perspective, there are 2 sensitive features: race and gender.

o Analyze the data by a combination (2) of features (sensitive and other). Example features to include in the analysis: location (county, state), and other features you consider relevant. Though these features may not be considered sensitive they can be a proxy for sensitive features.

o Determine feature groupings that are relevant for your analysis and explain your choices.

o Do you detect bias in the data?

o Present the results visually to show salient insights with respect to bias.

o Based on the EDA and your project objective, develop a hypothesis about where b/f issues could arise in the modeling (cluster analysis).

Modeling

o Based on your hypothesis, assess the fairness of your model/analysis by applying the fairness-related metrics that are available in any of the following tools: Python Fairlearn package, R Fairness/Fairmodels package, or other similar tools.

o Explain the reasoning for the groups that you selected for the fairness metrics.

o Compare the fairness metrics for the different groups.

o If you developed multiple models compare the fairness metrics for the models.

o Comment on the results.

o Suggest how the bias/fairness issues could be mitigated.

o Present the results visually to show salient insights.

Note: In the Fall Quarter you attended lectures on Bias/Fairness. Additionally, the following is a useful resource for analyzing b/f in data and modeling: Fairness & Bias Metrics
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫 Behavioural Economics ECON3124
  • 下一篇:代寫COMP1721、代做java程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        a91a精品视频在线观看| 国产麻豆日韩欧美久久| 美玉足脚交一区二区三区图片| 亚洲欧美另类中文字幕| 一区二区三区.www| 国产精品视频一区二区三区| 久久九九精品| 久久激情久久| 国产欧美一区二区在线观看| 欧美精品手机在线| 欧美资源在线观看| 欧美日韩美女一区二区| 在线播放视频一区| 国产精品人人做人人爽| 欧美精品亚洲| 国产精品嫩草影院av蜜臀| 午夜精彩国产免费不卡不顿大片| 国产亚洲精品久久久久久| 欧美日韩一本到| 亚洲伊人色欲综合网| 国产三级欧美三级| 欧美日韩在线三级| 国产精品夜夜夜一区二区三区尤| 欧美日韩综合视频网址| 久久精品一区二区三区不卡牛牛| 亚洲精品一区二| 国产精品海角社区在线观看| 在线观看三级视频欧美| 国产手机视频一区二区| 久久久久久9| 欧美大成色www永久网站婷| 亚洲视频免费| 国产视频一区三区| 在线观看日韩av| 久久成人免费网| 曰韩精品一区二区| 亚洲第一久久影院| 国产精品视区| 宅男噜噜噜66国产日韩在线观看| 欧美日韩精品二区第二页| 亚洲欧美精品一区| 亚洲精品欧美日韩| 91久久精品美女| 亚洲专区在线视频| 国产一区亚洲一区| 一区二区电影免费观看| 亚洲天堂男人| 一区二区福利| 在线观看日韩av电影| 欧美日韩精品系列| 国产一区二区三区奇米久涩| 亚洲桃色在线一区| 欧美成人精品激情在线观看| 国产女主播一区二区| 免费观看日韩av| 亚洲免费观看高清完整版在线观看| 在线观看欧美成人| 欧美午夜免费电影| 欧美二区不卡| 欧美午夜理伦三级在线观看| 亚洲视频在线一区观看| 亚洲欧洲一二三| 亚洲缚视频在线观看| 欧美视频国产精品| 亚洲福利在线观看| 亚洲大片一区二区三区| 久久福利电影| 国户精品久久久久久久久久久不卡| 黑人巨大精品欧美一区二区小视频| 亚洲一区欧美激情| 一本色道久久综合狠狠躁篇的优点| 国产一区二区三区日韩| 亚洲图中文字幕| 欧美婷婷在线| 国产精品久久精品日日| 国产日韩视频| 亚洲国产精品日韩| 亚洲天堂免费观看| 久久精品国产免费| 欧美日韩卡一卡二| 国产精品日韩欧美| 黄色亚洲大片免费在线观看| 欧美在线视频在线播放完整版免费观看| 久久综合九色99| 激情五月婷婷综合| 日韩午夜在线视频| 欧美日韩视频在线第一区| 欧美美女福利视频| 国产精品香蕉在线观看| 国产精品入口麻豆原神| 国产揄拍国内精品对白| 99视频一区二区| 亚洲网站在线| 久久综合网络一区二区| 嫩草国产精品入口| 久久免费精品日本久久中文字幕| 1024精品一区二区三区| 久久精品国产久精国产思思| 欧美精品一区二区三区四区| 久久中文字幕一区二区三区| 亚洲网址在线| 亚洲高清三级视频| 一区二区三区在线观看视频| 欧美日韩三级| 国产精品综合色区在线观看| 麻豆精品精华液| 久久亚洲二区| 久久精品亚洲一区二区三区浴池| 久久免费国产精品| 久久婷婷影院| 欧美chengren| 国产精品一区二区三区久久久| 美女精品自拍一二三四| 99re6热在线精品视频播放速度| 国产精品成人免费精品自在线观看| 国产麻豆91精品| 国内外成人免费视频| 亚洲国产99精品国自产| 久久国产88| 欧美紧缚bdsm在线视频| 欧美午夜视频在线| 亚洲级视频在线观看免费1级| 久久精品国产免费观看| 亚洲视频精选在线| 在线免费精品视频| 国产精品福利网| 亚洲欧美日韩一区在线| 欧美综合激情网| 国产丝袜美腿一区二区三区| 伊人成年综合电影网| 欧美激情视频一区二区三区不卡| 亚洲国产一区二区三区在线播| 欧美午夜视频在线观看| 卡通动漫国产精品| 美女视频黄免费的久久| 亚洲欧美变态国产另类| 黄色av日韩| 狠狠干狠狠久久| 在线中文字幕日韩| 欧美大片一区| 国产欧美一区二区三区在线老狼| 91久久久亚洲精品| 欧美在线免费视频| 国语自产精品视频在线看一大j8| 欧美1区免费| 韩日成人在线| 国产欧美日韩中文字幕在线| 久久露脸国产精品| 亚洲精选视频免费看| 欧美高清视频一区二区| 久久久成人精品| 国产精品自拍小视频| 欧美国产日本韩| 91久久精品网| 久久精品亚洲乱码伦伦中文| 欧美a级理论片| 亚洲美女视频| 久久久久国产免费免费| 国产精品一国产精品k频道56| 国户精品久久久久久久久久久不卡| 欧美在线观看视频一区二区三区| 亚洲伦理在线| 久久久福利视频| 在线亚洲免费视频|