日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MLDS 421: Data Mining

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Individual Assignment (100 points)

Instructions:

• Submit the paper review as a word or pdf file.

• Submit code as a Python notebook (.ipynb) file along with the HTML version.

• Write elegant code with substantial comments. If you have referred to or reused code from a website add the links as reference.

1. Paper Review – Following the guidelines review any one of the technical papers from Group2 (20)

2. Generate random multidimensional (n=1000, D >= 15) data using sklearn. (20)

• Build a K-means function from scratch (without using sklearn) and make assumptions to simplify the code as needed.

• Use the elbow method to find an appropriate value for k

• Use the silhouette plot to evaluate your clusters

• Re-cluster the data to see if you can improve your results

• Perform PCA on the original dataset and retain the most important PCs.

• Run K-means on the PCA output, compare results with respect to cluster quality and time taken

3. Using the data from 2, perform hyperparameter optimizations of the following clustering algorithms. (20)

• Agglomerative hierarchical clustering (number of clusters, linkage criterion)

• Density-based clustering (DBSCAN) (eps, minPts)

• Model-based clustering (GMM) (number of clusters)

4. Data mining and Cluster analysis of the following dataset (40)

https://data.cdc.gov/NCHS/NCHS-Injury-Mortality-United-States/vc9m-u7tv/about_data

The dataset contains the number of injury deaths per year by different injury intents from years 1999 to 2016 in the US. There are different groupings by age group, gender, race, and injury intent.

As a data science consultant, your goal is to mine the dataset and extract meaningful insights for your clients in the health care industry. The course of action is as follows:

• Review and understand the structure of the data.

o Columns are year, sex, age group, race, injury mechanism, injury intent, deaths, population, age specific rate, and the statistics of age specific rate

• Data Transformation

o For each year, group by age group, sex, or race and summarize data as needed for subsequent analysis.

• Exploratory Data Analysis (10)

o Create statistical summaries.

o Create boxplots, correlation/pairwise plots.

o Perform basic outlier analysis.

• Clustering (15)

o In a few lines create a plan that describes the 3-4 questions that are suitable for cluster analysis.

o List the various clustering algorithm(s) you’d use and why:

o E.g., K-means, K-medians, K-modes, Hierarchical methods, DBSCAN, etc.

o Apply the above algorithms to the filtered dataset based on your plan.

o Report on the quality of the clusters, pros/cons, and summarize your findings.

• Bias/Fairness Questions (15)

Data

o In the dataset under study, from a bias/fairness (b/f) perspective, there are 2 sensitive features: race and gender.

o Analyze the data by a combination (2) of features (sensitive and other). Example features to include in the analysis: location (county, state), and other features you consider relevant. Though these features may not be considered sensitive they can be a proxy for sensitive features.

o Determine feature groupings that are relevant for your analysis and explain your choices.

o Do you detect bias in the data?

o Present the results visually to show salient insights with respect to bias.

o Based on the EDA and your project objective, develop a hypothesis about where b/f issues could arise in the modeling (cluster analysis).

Modeling

o Based on your hypothesis, assess the fairness of your model/analysis by applying the fairness-related metrics that are available in any of the following tools: Python Fairlearn package, R Fairness/Fairmodels package, or other similar tools.

o Explain the reasoning for the groups that you selected for the fairness metrics.

o Compare the fairness metrics for the different groups.

o If you developed multiple models compare the fairness metrics for the models.

o Comment on the results.

o Suggest how the bias/fairness issues could be mitigated.

o Present the results visually to show salient insights.

Note: In the Fall Quarter you attended lectures on Bias/Fairness. Additionally, the following is a useful resource for analyzing b/f in data and modeling: Fairness & Bias Metrics
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫 Behavioural Economics ECON3124
  • 下一篇:代寫COMP1721、代做java程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲精品一区二区三| 在线综合视频| 一区二区不卡在线视频 午夜欧美不卡'| 香蕉成人啪国产精品视频综合网| 久久久久国色av免费看影院| 夜夜嗨av一区二区三区四区| 在线观看成人av电影| 六月婷婷久久| 国产精品日日做人人爱| 西瓜成人精品人成网站| 夜夜精品视频| 欧美国产欧美综合| 久久人人爽人人爽| 欧美日一区二区三区在线观看国产免| 国产情人节一区| 伊人久久亚洲美女图片| 亚洲宅男天堂在线观看无病毒| 国产一区二区三区在线观看免费| 亚洲社区在线观看| 欧美另类女人| 免费中文字幕日韩欧美| 国产精品自在在线| 99精品国产一区二区青青牛奶| 女人香蕉久久**毛片精品| 欧美14一18处毛片| 亚洲老司机av| 国产日产精品一区二区三区四区的观看方式| 美日韩精品视频免费看| 一本一道久久综合狠狠老精东影业| 在线一区免费观看| 亚洲丰满少妇videoshd| 欧美在线播放视频| 一区二区三区蜜桃网| 亚洲国产成人porn| 国产欧美日本| 中文在线资源观看网站视频免费不卡| 久久夜色精品国产欧美乱极品| 久久av一区二区| 亚洲国产91精品在线观看| 免费91麻豆精品国产自产在线观看| 国产美女精品免费电影| 欧美色精品在线视频| 国产精品视频区| 久久精品亚洲一区二区三区浴池| 欧美成人午夜激情视频| 欧美精品久久久久久| 久久国产日韩| 中文久久精品| 亚洲第一精品夜夜躁人人躁| 亚洲二区三区四区| 国产午夜精品视频| 男女激情久久| 美女精品在线观看| 夜夜嗨av一区二区三区四季av| 久久久久久欧美| 国产一区二区三区四区三区四| 好吊色欧美一区二区三区四区| 国产三级欧美三级日产三级99| 欧美在线欧美在线| 欧美大片在线看免费观看| 国产女主播一区二区三区| 欧美日韩国产专区| 亚洲第一页在线| 久久综合九色| 9人人澡人人爽人人精品| 日韩午夜中文字幕| 久久久亚洲国产天美传媒修理工| 免费观看成人www动漫视频| 欧美在线观看视频| 亚洲黄色av| 欧美精品一线| 国产日韩久久| 欧美日韩亚洲国产精品| 国产麻豆日韩欧美久久| 午夜在线视频观看日韩17c| 最新高清无码专区| 好吊视频一区二区三区四区| 麻豆精品传媒视频| 欧美在线视频免费播放| 在线看国产日韩| 久久国产综合精品| 欧美日本乱大交xxxxx| 欧美一区二区高清| 亚洲私人影吧| 久久综合国产精品台湾中文娱乐网| 99热这里只有成人精品国产| 久热国产精品视频| 欧美在线|欧美| 老司机免费视频久久| 欧美日韩国产高清视频| 欧美精品麻豆| 亚洲午夜久久久| 国产亚洲欧洲一区高清在线观看| 亚洲视频播放| 欧美自拍丝袜亚洲| 亚洲精品一区二区三| 美日韩精品免费| 久久久久久久综合狠狠综合| 久久av资源网站| 欧美一区二区三区免费在线看| 国产日韩欧美在线看| 免费亚洲一区| 国产精品豆花视频| 中日韩美女免费视频网址在线观看| 欧美极品一区| 国产精品久久看| 国产精品国产三级国产专播品爱网| 久久激情婷婷| 欧美视频在线一区二区三区| 欧美成人免费小视频| 久久午夜精品| 91久久精品国产91性色| 小黄鸭视频精品导航| 亚洲娇小video精品| 欧美精品久久久久久久免费观看| 亚洲电影在线免费观看| 老司机午夜精品视频在线观看| 中文欧美在线视频| 亚洲欧美成人精品| 欧美日韩精品综合在线| 欧美激情区在线播放| 欧美日韩一区二区在线观看视频| 久久国产免费| 国产精品毛片va一区二区三区| 久久精品一二三区| 亚洲电影一级黄| 伊人久久亚洲美女图片| 亚洲九九精品| 亚洲精品视频中文字幕| 亚洲精华国产欧美| 欧美日韩国内自拍| 一区二区三区鲁丝不卡| 国产综合在线看| 欧美色大人视频| av成人老司机| 亚洲美女中出| 国内精品久久久久久久97牛牛| 亚洲视屏一区| 亚洲麻豆av| 国产午夜亚洲精品不卡| 欧美成年人视频网站欧美| 午夜在线精品偷拍| 黄色资源网久久资源365| 亚洲一区二区三区精品动漫| 久久成人av少妇免费| 亚洲宅男天堂在线观看无病毒| 国产一区二区三区精品久久久| 久久人人爽人人爽爽久久| 国产欧美精品日韩区二区麻豆天美| 久久国产主播精品| 国产综合自拍| 国产欧美日韩精品一区| 在线视频你懂得一区二区三区| 亚洲国产综合在线看不卡| 最新热久久免费视频| 亚洲韩国精品一区| 久久久综合网| 一区二区三区久久| 亚洲理伦在线| 99国产精品久久久| 久久久亚洲一区| 国产精品久久久一区麻豆最新章节| 午夜精品美女久久久久av福利| 久久亚洲春色中文字幕|