日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3D printer materials estimation編程

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫Dragonfly Network Diagram Analysis
  • 下一篇:代寫UDP Client-Server application java程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        一本久久综合亚洲鲁鲁五月天| 欧美日韩色综合| 亚洲午夜激情免费视频| 国产手机视频精品| 日韩一区二区免费高清| 欧美一区二区免费| 国产精品女人久久久久久| 亚洲永久精品大片| 国产精品久久久久一区| 国产精品视频专区| 性欧美1819性猛交| 激情六月综合| 国产美女精品人人做人人爽| 欧美视频一区在线观看| 久久久青草青青国产亚洲免观| 国产精品综合av一区二区国产馆| 国产精品久久久久免费a∨大胸| 国产精品久久久999| 好男人免费精品视频| 亚洲女同同性videoxma| 蘑菇福利视频一区播放| 欧美一级久久| 国产农村妇女毛片精品久久麻豆| 国产精品嫩草影院av蜜臀| 久久综合九色综合网站| 欧美伊人影院| 久久性天堂网| 欧美一区二区福利在线| 亚洲国产高清视频| 午夜日韩视频| 亚洲精品在线视频| 国产精品成人va在线观看| 国产欧美一区二区精品性色| 在线亚洲一区| 国产精品久久久久久久久免费桃花| 久久久夜夜夜| 亚洲香蕉伊综合在人在线视看| 欧美视频一区二区三区| 欧美一区二区三区四区在线观看地址| 欧美日韩一区二区在线| 欧美福利电影网| 欧美成人视屏| 91久久久久久国产精品| 欧美在线网址| 又紧又大又爽精品一区二区| 午夜欧美大尺度福利影院在线看| 国产精品欧美一区二区三区奶水| 国产精品久久国产愉拍| 欧美视频免费| 久久免费视频网站| 在线观看国产成人av片| 亚洲视频在线观看网站| 亚洲素人一区二区| 亚洲欧美视频在线观看| 久久久久成人精品免费播放动漫| 国产精品综合色区在线观看| 国产精品三级视频| 欧美日本视频在线| 国产自产高清不卡| 国模套图日韩精品一区二区| 欧美福利一区二区| 影音先锋亚洲电影| aa级大片欧美三级| 久久久久看片| 亚洲高清视频在线观看| 黄色一区二区在线| 国产精品黄页免费高清在线观看| 国产一区二区三区久久悠悠色av| 欧美国产在线视频| 裸体丰满少妇做受久久99精品| 欧美专区日韩视频| 欧美午夜电影在线| 欧美日韩色综合| 亚洲精品1区| 亚洲免费电影在线观看| 久久精品中文字幕一区| 欧美在线三级| 国产日韩一区二区三区| 在线观看亚洲精品视频| 国产曰批免费观看久久久| 久久亚洲色图| 尤物在线观看一区| 欧美日韩国产二区| 国产精品久久久久91| 老司机午夜免费精品视频| 影音先锋另类| 亚洲精品日韩在线| 久久精品国产综合精品| 欧美日本在线播放| 亚洲在线视频一区| 欧美日一区二区在线观看| 欧美日本亚洲韩国国产| 麻豆成人综合网| 在线免费观看欧美| 久久噜噜噜精品国产亚洲综合| 欧美一级电影久久| 欧美亚洲一区二区在线| 欧美一区二区三区在线观看视频| 欧美不卡三区| 国产一区二区三区久久久| 久久精品成人| 亚洲精品日本| 在线电影一区| 在线观看日韩国产| 亚洲精品欧洲| 免费亚洲视频| 国产丝袜美腿一区二区三区| 亚洲国产精品va在看黑人| 亚洲欧美国产日韩中文字幕| 国产亚洲精品成人av久久ww| 日韩午夜精品视频| 欧美日韩一区三区| 亚洲特黄一级片| 欧美日韩不卡| 亚洲全黄一级网站| 午夜视频一区在线观看| 久久国产精品电影| 欧美特黄a级高清免费大片a级| 先锋影音一区二区三区| 国产欧美va欧美不卡在线| 欧美日韩精品是欧美日韩精品| 一区二区三区四区在线| 亚洲国产一区视频| 久久午夜精品| 国产精品国产三级国产专播精品人| 欧美成人免费小视频| 欧美日韩色综合| 99这里只有久久精品视频| 国产亚洲精品一区二555| 蜜桃av久久久亚洲精品| 亚洲视频在线一区| 亚洲美女在线一区| 国产精品永久免费视频| 亚洲日本中文字幕免费在线不卡| 免费看的黄色欧美网站| 一本一本久久a久久精品综合妖精| 欧美日韩天堂| 亚洲综合色自拍一区| 性亚洲最疯狂xxxx高清| 激情欧美亚洲| 99国产精品99久久久久久粉嫩| 亚洲欧美三级在线| 久久夜色撩人精品| 亚洲日本视频| 欧美刺激午夜性久久久久久久| 亚洲美女区一区| 国产日韩欧美综合精品| 亚洲乱码国产乱码精品精| 亚洲国产精品激情在线观看| 国产精品欧美一区喷水| 亚洲国产岛国毛片在线| 午夜精品久久久久久久久| 久久米奇亚洲| 亚洲乱码国产乱码精品精| 国产精品人人做人人爽| 亚洲欧美清纯在线制服| 国产精品尤物| 亚洲免费影院| 久久久人成影片一区二区三区观看| 欧美午夜不卡视频| 国产麻豆日韩欧美久久| 亚洲欧美一区二区视频| 久久久久久久波多野高潮日日| 日韩亚洲欧美精品|