日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3D printer materials estimation編程

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫Dragonfly Network Diagram Analysis
  • 下一篇:代寫UDP Client-Server application java程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        99国产精品久久久久久久| 久久福利影视| 狠狠88综合久久久久综合网| 亚洲国产精品电影在线观看| 狠狠综合久久av一区二区小说| 欧美精品久久99久久在免费线| 久久综合狠狠综合久久激情| 欧美日本韩国一区二区三区| 国产综合色一区二区三区| 一区二区视频免费完整版观看| 久久精品一区二区三区不卡牛牛| 欧美性猛交xxxx乱大交退制版| 久久最新视频| 亚洲欧美日韩一区二区三区在线| 国产精品美女www爽爽爽| 欧美视频在线免费| 亚洲人成欧美中文字幕| 亚洲激情在线播放| 亚洲精品一区二区三区在线观看| 国产一区二区三区电影在线观看| 国产精品综合不卡av| 亚洲自拍都市欧美小说| 国精品一区二区三区| 欧美—级在线免费片| 欧美a级片网站| 久久人人看视频| 久久精品在线| 欧美性猛交xxxx免费看久久久| 久久九九99| 欧美a级在线| 1204国产成人精品视频| 影音先锋久久久| 欧美日韩亚洲一区二区三区在线观看| 欧美高清在线一区二区| 国产日韩综合一区二区性色av| 国产亚洲精品美女| 美女精品国产| 亚洲破处大片| 亚洲高清在线精品| 欧美一区二区三区四区高清| 国产日韩欧美中文在线播放| 一区二区毛片| 国产精品免费一区二区三区在线观看| 久久国产精品一区二区| 久久成人人人人精品欧| 好吊色欧美一区二区三区四区| 欧美人与性动交a欧美精品| 国产精品高潮呻吟| 久久女同精品一区二区| 亚洲精品系列| 麻豆精品国产91久久久久久| 欧美日韩国产片| 尤物在线观看一区| 一本色道久久88综合日韩精品| 狠狠色伊人亚洲综合网站色| 艳妇臀荡乳欲伦亚洲一区| 欧美精品在线一区二区| 国产伦精品一区二区三区高清版| 欧美激情黄色片| 欧美日韩精品欧美日韩精品一| 亚洲国产成人av| 亚洲黄色免费电影| 久久免费国产精品1| 亚洲青涩在线| 亚洲人成亚洲人成在线观看| 日韩亚洲国产精品| 国产综合色产| 久久亚洲捆绑美女| 一本色道久久综合狠狠躁的推荐| 亚洲国产精品第一区二区| 久久成人亚洲| 久久精品一区二区三区中文字幕| 欧美在线不卡| 国产精品自在线| 国产精品成人一区二区艾草| 国产一区二区三区最好精华液| 在线不卡免费欧美| 99热这里只有成人精品国产| 激情久久影院| 伊人色综合久久天天| 欧美另类专区| 香蕉久久精品日日躁夜夜躁| 国产精品亚洲欧美| 午夜精品久久久久久久99樱桃| 国产亚洲女人久久久久毛片| 欧美三级免费| 久久久亚洲精品一区二区三区| 国产日韩成人精品| 蜜桃av久久久亚洲精品| 亚洲日本va在线观看| 国产一区自拍视频| 欧美中文在线视频| 国产麻豆9l精品三级站| 欧美午夜a级限制福利片| 欧美精品久久99久久在免费线| 欧美少妇一区| 欧美中文字幕在线播放| 欧美视频在线观看一区二区| 国产一区二区三区四区hd| 国内精品**久久毛片app| 欧美日韩精品| 午夜亚洲视频| 国产精品男人爽免费视频1| 亚洲国产精品v| 国产日韩欧美在线观看| 99在线精品视频在线观看| 国产伦精品一区二区| 免费人成网站在线观看欧美高清| 亚洲欧美日韩另类精品一区二区三区| 久久躁日日躁aaaaxxxx| 国产精品区二区三区日本| 国产麻豆精品theporn| 一区二区三区导航| 久久久久欧美| 欧美精品色一区二区三区| 亚洲精品一区二区三区av| 久久久精品国产免大香伊| 免费久久99精品国产| 欧美激情成人在线视频| 亚洲综合欧美日韩| 亚洲美女av黄| 亚洲综合色激情五月| 在线观看亚洲| 国产精品私人影院| 国产亚洲综合精品| 欧美日韩在线视频一区二区| 国产一区二区三区久久悠悠色av| 欧美日韩视频第一区| 亚洲性人人天天夜夜摸| 欧美精品18+| 国产农村妇女毛片精品久久莱园子| 亚洲欧美国产不卡| 宅男噜噜噜66一区二区| 老司机免费视频一区二区三区| 国产精品久久久久久久久久免费| 国产在线观看精品一区二区三区| 久久久久久国产精品一区| 国产午夜久久| 国产日韩欧美日韩大片| 欧美午夜不卡视频| 欧美日韩成人在线| 欧美成人精精品一区二区频| 欧美性久久久| 亚洲砖区区免费| 亚洲欧美精品中文字幕在线| 国产精品视频yy9299一区| 久久久久久噜噜噜久久久精品| 亚洲国产另类久久精品| 亚洲精品一区二区三区在线观看| 国内精品一区二区三区| 午夜精品三级视频福利| 一区免费观看视频| 国产亚洲欧美aaaa| 久久婷婷色综合| 久久9热精品视频| 99香蕉国产精品偷在线观看| 欧美日韩在线播| 久久综合狠狠| 蜜臀久久久99精品久久久久久| 国产欧美日韩一区二区三区在线| 久久琪琪电影院| 欧美理论片在线观看| 亚洲女人小视频在线观看| 欧美日韩国产成人在线91|