日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

B31SE編程代做、Java,c++程序代寫

時間:2024-02-17  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Engineering and Physical Sciences
Electrical Electronic and Computer Engineering
B31SE Image Processing
Fundamentals of Image Processing with Matlab

Matlab scripts a01images.m and b01neighbours.m demonstrate how to load and
image, get some image information, display an image, and perform some simple manipulations
with an image. Run these scripts on various images. Use matlab help if necessary.

If you feel yourself comfortable with these simple image processing manipulations and matlab
programming in general, you can start working on the following programming assignment.

This assignment consists of four parts (tasks).

Task 1a (4 points): Nonlinear image filtering. Given a grey-scale image (, ), consider
the following non-linear iterative process:

where K is a positive constant. Note that the weights {} depend on the pixel positions (, )
and the iteration number n. After a certain number of iterations, you should get results similar
to those shown in the picture below: small-scale image details are removed while salient image
edges are sharpened.

Your first task is to implement the above non-linear iterative procedure, perform a number of
experiments (with different images, different numbers of iterations, and various values of
parameter k).

A matlab script simple_averaging.m implements the above iterative scheme in the
simplest case when all the weights are equal to one: = 1.

Task 1b (4 points): Low-light image enhancement. The above filtering scheme can be used
for enhancing low-light images. Given a colour (RGB) image
Let (, ) be obtained from (, ) by applying the image filtering scheme from Part 1
described above. An enhanced version of the original colour (, ) is generated by

where    is a small positive parameter used to avoid division by zero. You are expected to get
results similar to those shown below:
original enhanced
Task 2 (4 points): Image filtering in frequency domain.
This part is independent of Parts 1 and 2 and devoted to using the Fourier transform for image
filtering purposes.

Matlab function fftshift shifts the zero frequency component of an image to the centre of
spectrum

Try Fourier4ip.m matlab script and see how the Fourier transform can be used for image
processing and filtering purposes.

Your task is as follows. Image eye-hand.png is corrupted by periodic noise. Find the Fourier
transform of the image, visualise it by using log(abs(fftshift(.))), as seen below.

An image corrupted by periodic ripples The image in the frequency domain


The four small crosses in the frequency domain correspond to the frequencies behind the
periodic noise. Use impixelinfo to locate the frequencies. Construct a notch filter (a band-stop
filter, you can use small-size rectangles or circles to kill the unwanted frequencies) and use it
to remove/suppress the periodic noise while preserving the image quality. The Part 3 of your
report must include the reconstructed image and the filter used in the frequency domain.

Task 3a (5 points): Image deblurring by the Wiener filter.
Given a grey-scale image (, ), consider the following non-linear iterative process:

(, ) = ?(, ) ? (, ) + (, )
,
where f (x,y) is the latent (unblurred) image, g(x,y) is the degraded image, h(x,y) is a known
blurring kernel, ? denotes the convolution operation, and n(x,y) stands for an additive noise.
Applying the Fourier transform to both sides of the above equation yields

(, ) = (, )(, ) + (, )
.
The Wiener filter consists of approximating the solution to this equation by

(, ) = [
1
(, )
|(, )|2
|(, )|2 +
] (, ) =
?(, )
|(, )|2 +
(, ) (1)
,
where ?(, ) is the complex conjugate of (, ). Implement Weiner filter restoration
scheme (1) and test it for different types of blur kernels (motion blur and Gaussian blur). In
your implementation of the Wiener filter restoration scheme (1) you may need to use
H = psf2otf(h,size(g));
See https://uk.mathworks.com/help/images/ref/psf2otf.html for details. See also deblur.m.

Task 3b (5 points): Image deblurring by ISRA. The matlab script deblur.m contains
simple implementations of two popular image deblurring schemes, the Landweber method
and the Richardson-Lucy method (in addition, the matlab built-in implementation of the
Wiener filter is presented in deblur.m). In particular, the Richardson-Lucy method consists
of the following iterative process

0(, ) = (, ), +1(, ) = (, ) ? (?(?, ?) ?
(, )
(, ) ? ?(, )
)

where ? stand for the pixel-wise multiplication and the pixel-wise division is also used. Let us
consider the so-called ISRA (Image Space Reconstruction Algorithm) method

0(, ) = (, ), +1(, ) = (, ) ? (
?(?, ?) ? (, )
?(?, ?) ? ?(, ) ? (, )
)

.
Your task is to implement ISRA and use PSNR graphs (see again deblur.m) to compare
ISRA against the Wiener, Landweber, and Richarson-Lucy methods for the two types of
motion blur and Gaussian blur considered in deblur.m.

Remark. In this particular example of additive gaussian noise, advantages of the Richardson-
Lucy and ISRA methods are not revealed.


Task 4 (3 points): Image filtering in frequency domain.

Matlab script handwritten_digit_recognition_simple.m provides you with a simple
application of ANN for handwritten digit recognition. Your task is to modify the hidden layers
of the network in order to achieve the accuracy higher than 93%. You are not allowed to use
CNN layers. You are not allowed to use more than 100 neurons in total for all your hidden
layers. You are not allowed to modify the training options.

You can observe that a higher accuracy can be easily achieved if convolutional layers are used:
handwritten_digit_recognition.m. You can get more information about various layers used
in ANN from https://uk.mathworks.com/help/deeplearning/ug/create-simple-deep-
learning-network-for-classification.html


Please submit a single report describing briefly your results achieved for Tasks 1, 2,
3, and 4 of the assignment. Together with the report, please submit your matlab scripts
implementing your solutions to Tasks 1, 2, 3, and 4.
請加QQ:99515681  郵箱:99515681@q.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECON 323、C/C++,Java程序設計代做
  • 下一篇:代投EI會議、EI期刊 EI檢索入口查詢方法
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久精品国产2020观看福利| 欧美黄色影院| 91久久久久久久久久久久久| 国产自产在线视频一区| 亚洲伊人色欲综合网| 久久亚洲风情| 亚洲精品欧美专区| 亚洲福利在线观看| 国产欧美一区二区精品婷婷| 久久成人免费日本黄色| 亚洲七七久久综合桃花剧情介绍| 欧美久久久久| 一区二区激情小说| 久久一区二区三区国产精品| 久热这里只精品99re8久| 伊人狠狠色丁香综合尤物| 狠狠综合久久av一区二区小说| 国产精品免费一区二区三区观看| 国产精品日韩精品欧美在线| 在线观看福利一区| 日韩亚洲在线观看| 性欧美暴力猛交另类hd| 国产欧美精品久久| 午夜免费在线观看精品视频| 欧美有码视频| 国产日本欧美一区二区三区在线| 韩国精品久久久999| 在线看片成人| 国产主播精品在线| 欧美激情一区二区| 久久综合影视| 国产色综合天天综合网| 黄色成人av网站| 久久综合精品国产一区二区三区| 亚洲精品国产日韩| 好吊一区二区三区| 欧美二区视频| 亚洲国产欧美久久| 国产婷婷色一区二区三区在线| 宅男在线国产精品| 亚洲小少妇裸体bbw| 国产精品久久久久久超碰| 久久精视频免费在线久久完整在线看| 激情成人av| 在线观看日产精品| 国产日韩欧美中文在线播放| 99精品视频免费在线观看| 国产日韩欧美视频在线| 欧美一级理论片| 国产一区日韩二区欧美三区| 亚洲国产精品va在线看黑人| 一本大道久久精品懂色aⅴ| 欧美激情亚洲激情| 欧美电影专区| 国产欧美一区二区精品仙草咪| 国内伊人久久久久久网站视频| 国内精品一区二区三区| 老司机午夜精品视频在线观看| 亚洲破处大片| 日韩午夜激情av| 亚洲国产精品va| 亚洲视频一区在线| 免费成人激情视频| 在线观看一区二区精品视频| 久久精品女人天堂| 美日韩精品视频免费看| 欧美专区日韩视频| 一本色道久久88综合日韩精品| 久久免费精品日本久久中文字幕| 国产精品爱久久久久久久| 狠狠干成人综合网| 久久伊人一区二区| 亚洲精品在线视频观看| 99国产麻豆精品| 亚洲激情电影中文字幕| 欧美成人资源网| 国产精品一页| 午夜精品久久久久久久久久久| 国产精品夜夜夜| 欧美人与性动交a欧美精品| 亚洲第一搞黄网站| 在线高清一区| 欧美日韩免费在线| 玖玖玖免费嫩草在线影院一区| 亚洲欧美激情视频| 国产精品久久久久久久久久久久久久| 国产视频一区二区三区在线观看| 国产精品国产亚洲精品看不卡15| 国产伦精品一区二区三区视频黑人| 亚洲人成在线播放| 国产精品视频午夜| 尤物精品在线| 欧美午夜电影一区| 亚洲一区二区三区免费观看| 国产麻豆91精品| 美日韩精品视频| 亚洲韩国一区二区三区| 亚洲欧美日韩国产中文在线| 欧美午夜精品久久久久免费视| 国产精品免费视频xxxx| 国产欧美日韩在线播放| 精品成人一区二区| 精品动漫一区二区| 欧美激情精品久久久久久免费印度| 麻豆成人小视频| 国产精品久久久久久超碰| 一二美女精品欧洲| 欧美成人激情视频免费观看| 久久免费少妇高潮久久精品99| 欧美日韩另类国产亚洲欧美一级| 欧美美女操人视频| 狠狠久久亚洲欧美| 国产精品久久婷婷六月丁香| 欧美日韩一区免费| 性做久久久久久| 亚洲精品视频免费观看| 99精品欧美一区二区三区综合在线| 欧美激情区在线播放| 亚洲特级片在线| 欧美日韩国产精品一区二区亚洲| 国产精品亚洲精品| 在线激情影院一区| 国产一区二区久久精品| 欧美专区一区二区三区| 精品动漫3d一区二区三区免费版| 欧美一区二区日韩| 欧美一区二区私人影院日本| 欧美日韩天堂| 国产精品性做久久久久久| 一区二区高清在线| 亚洲激情在线观看| 国产麻豆精品视频| 亚洲免费一区二区| 久久久久国产精品一区二区| 亚洲国产精品ⅴa在线观看| 久久久久综合| 久久都是精品| 久久黄色级2电影| 亚洲视频在线观看免费| 国产一区二区毛片| 国产视频一区二区三区在线观看| 国产伦精品一区二区三区在线观看| 亚洲影院在线| 一区二区日本视频| 欧美一区亚洲一区| 一区二区高清在线观看| 精品99一区二区| 久久婷婷人人澡人人喊人人爽| 久久国产精品一区二区| 亚洲高清在线精品| 欧美国产精品专区| 国产视频一区欧美| 亚洲一区免费网站| 欧美中文字幕在线| 国产精品成人在线观看| 欧美精品免费看| 欧美综合第一页| 欧美黑人在线观看| 亚洲视频在线观看免费| 国产一区二区三区久久久久久久久| 欧美国产日韩一区二区在线观看| 激情懂色av一区av二区av| 免费亚洲视频| 国产精品自在欧美一区|