日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS 476/676 程序

時間:2024-02-14  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Winter 2024 CS **6/676

Assignment 1

Due Feb-11, 11:59pm, via Crowdmark.

1. [8] Consider a **period binomial model with T = 1 and assume the risk free interest rate r = 0. That is, the stock (currently priced at S0 = 10) can got up to STu = uS0 with probability pu or down to STd = dS0 with probability 1−pu where pu ∈ (0,1). We know that d < 1 < u, but we do not know u or d. Suppose the following two options are traded in the market, both with maturity T = 1:

• European Put with strike K = 9 and current price P (1) = 1, 10

• European Put with strike K = 8 and P (2) = 1/3. 20

Assume the market is arbitrage free.

(a) [3] What is the fair value of a European call option with a strike price of K3 = 7?

(b) [2]Let δ0 be the number of stocks and η0 the number of bonds (noting B0 = BT = 1) you hold at t = 0. Find δ0 and η0 so that your strategy exactly replicates the payout of a short position in this call.

(c) [3] Using the actual probability pu, what is the expected option payoff for the European call in (a)? What is wrong with pricing this call option at this expected payoff value? If this European call option is priced at the expected payoff using p which is different from the fair value computed in (a), how can you construct an arbitrage?

2. [4] Consider the N-period binomial lattice. Denote by Snj for 0 ≤ n ≤ N and 0 ≤ j ≤ n be the price of the underlying at time tn and state j (i.e., j ups). A European Straddle Option has payoff at time T

max{K −SN,0}+max{SN −K,0}.

Denote by V (Snj , K, tn) be the fair value of the straddle option at time tn in state j. Use induction (over n)

to show that for any constant λ > 0,

V(λSnj,λK,tn)=λV(Snj,K,tn), n=0,1...,N,j=0,1,...,n.

3. [8] Consider the N-period binomial lattice where, at time t , the stock price Sj can go up to Sj+1 = uSj n n n+1n

with probability pu and sown to Sj n+1

interest rate and denote by

= dSj with probability 1 − pu. Denote by r > 0 the constant risk free n

qu = er∆t − d u−d

the risk neutral probability.

(a) [3] Provide an expression for all possible stock prices at T = ∆t · N .

(b) [2] If S0 is given, what is the risk neutral probability that, at time T, the stock price has experienced exactly k up moves?

(c) [3] Using risk neutral pricing, provide the expression, in terms of T, qu, K, r for the fair time t = 0 value of a European straddle expiry T and strike price K. Recall from Question 3 that such an option has payout max{K − SN , 0} + max{SN − K, 0}. Justify your answer.

4. [8] In this exercise, we consider the problem of pricing a Parisian Up-and-In Call. Let (St)t≥0 be a geometric Brownian Motion with drift r being equal to the risk-free interest rate and volatility σ, i.e., St = S0 exp(Xt) where Xt = (r − σ2/2)t + σWt for a Brownian Motion (Wt)t≥0 and S0 > 0 is some constant (today’s stock price). Let K > 0 be the strike price and L > 0 be a barrier. A Parisian Up-and-In Call (PUIC) option is activated if the stock price process (St)t∈[0,T] exceeds L consecutively for a period of time at least D > 0. Hence, the payout of a PUIC option at time T is max {0, (ST − K ) · A}, where

(1, if (St)t∈[0,T] had a consecutive excursion above L that lasted at least D, A=.

0, otherwise.

Today’s price is the discounted expected payoff; hence, we are estimating μ = E ?e−rT max {(ST − K) · A, 0}? .

For simplicity, we assume throughout the remainder of this question that 0 < D < T, K,L > S0. 1

 

(a) [4] Give an algorithm, in pseudo-code, that computes a Monte Carlo estimator for μ based on n simu- lations.

(b) [4] Implement your algorithm from a). Let N = 250, r = 0.05, σ = 0.25, D = 0.1, T = 1, S0 = 100 and i)K=110,L=120andii)K=120,L=110. Foreachofi)andii),reportaMCestimateforμalong with a 95% confidence interval based on n = 100, 000 independent simulations.

Note. In order to count how long the stock price was above L, use the following:

• IfStk ≥LandStk+1 ≥L,addtk+1−tk totheclock.

• If Stk < L and Stk+1 < L, there is no excursion.

• If Stk < L and Stk+1 ≥ L, an excursion started between tk and tk+1; add 0.5(tk+1 − tk) to the clock. • If Stk ≥ L and Stk+1 < L, an excursion ended between tk and tk+1; add 0.5(tk+1 − tk) to the clock.

5. [22] Consider the Black Scholes model, that is, let (St)t∈[0,T] be a geometric Brownian Motion with drift r and volatility σ, i.e., St = S0 exp(Xt) where Xt = (r − σ2/2)t + σWt for a Brownian Motion (Wt)t≥0 and S0 > 0 is some constant (today’s stock price). An Asian Option with maturity T and strike price K has

payout at time T given by max n0, 1 R T St dt − K o . Given time steps 0 ≤ t1 < · · · < tN = T for some N , we T0

consider the discretized Asian option with payout max n0, N1 PNj=1 Stj − Ko . Today’s price for this option

?−rT n 1PN o? is the discounted expected payoff. As such, we are estimating μ = E e max 0, N j=1 Stj − K

the remainder of this question, assume the time steps are given by tk = Nk T for k = 1,...,N. (a) [1] Explain why this option is a path dependent option.

. For

(b) [2] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using (naive) Monte Carlo.

(c) [2] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using antithetic variates.

(d) [2] There is no known analytical formula for μ. The reason is that the distribution of the sum of log-

normals is not known. However, if we replace the arithmetic average N1 PNj=1 Stj by the geometric

?−rT ? ?QN ?1/N ?? average, i.e., if we consider μg = E e max 0, j =1 S (tj ) − K

instead, the problem sim- plifies as the distribution of the product of log-normals is again log-normal. One can show (you don’t

need to) that μg = e−rT ?ea+b/2Φ(d1) − KΦ(d2)?, where a=log(S0)+(r−σ2/2)T(N+1)/(2N), b=σ2T(N+1)(2N+1),

√ √ 6N2 d1 =(−log(K)+a+b)/ b, d2 =d1 − b.

Explain why using the Asian Option with geometric averaging can be used as a control variable to price the Asian Option with arithmetic averaging.

(e) [3] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using the geometric Asian Option as a control variable. Estimate the internal β using a pilot run.

(f) [4] Implement your algorithms from b), c) and e) and call your functions with S0 = 100, K = 110, r = 0.01, σ = 0.1, T = 1, N = 260 and n = 105 and npil = 100. You should report 3 confidence intervals, one for each algorithm. Comment on your output.

Finally, suppose instead of the continuous time Black Scholes model, we assume an N-period binomial model √

with u = eσ

(g) [3] Write down an algorithm, in pseudo-code, to find the fair value V0 of an Asian Call Option.

T/N, d = 1/u and qu = 1/2 (and the same σ,r,S0,K,T as before).

(h) [3] Implement your algorithm and, for each N ∈ {5, 10, 20} report the output for S0 = 100, K = 110,

r=0.01,σ=0.1(justlikebefore),u=eσ T/N,d=1/u.

(i) [2] Discuss advantages and shortcomings of the MC method versus the approximation through the binomial model.

2

 

6. [5] Graduate Students Only. Consider the N-period binomial model, but assume that at each time n ≥ 1, the up factor un = un(ω1,...,ωn) and down factor dn = dn(ω1,...,ωn) and the risk free interest rate rn = rn(ω1,...,ωn) are allowed to depend on n and the first n outcomes ω1,...,ωn ∈ {up,down}. The initial values u0,d0,r0 at time 0 are given. The stock price at time 1 is

and, for n ≥ 1, the stock price at time n + 1 is (un(ω1,...,ωn)Sn(ω1,...,ωn),

(uS0, if ω1 = up, S1(ω1) = dS0, if ω2 = down.

if ωn+1 = up,

if ωn+1 = down. .

One dollar invested or borrowed from the bank account at time 0 grows to an investment or debt of er0∆t at time 1; for n ≥ 1, one dollar invested or borrowed at time n grows to an investment or debt of ern(ω1,...,ωn)∆t at time n + 1. We assume that the no-arbitrage condition

0 < dn(ω1,...,ωn) < exp{rn(ω1,...,ωn)∆t} < un(ω1,...,ωn)

for n ∈ N and ω1,...,ωn ∈ {up,down}. Similarly, assume that at time t = 0, 0 < d0 < er0∆t < u0.

Consider a derivative which, after N periods, pays off the random amount VN (ω1, . . . , ωN ).

(a) In the model just described, provide an algorithm for determining the price at time zero for the derivative.

(b) Construct a replicating portfolio in this general model. That is, provide a formulas for δn and ηn, n = 0, 1, . . . , so that if we hold δn stocks and ηn bonds, then this portfolio replicated the derivate payout VN at time N.

Sn+1(ω1,...,ωn,ωn+1) = dn(ω1,...,ωn)Sn(ω1,...,ωn),

如有需要,請加QQ:99515681 或WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫EMS5730、代做Python設計程序
  • 下一篇:代寫CS9053、代做Java語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        夜夜嗨av一区二区三区网站四季av| 亚洲国产三级网| 国产精品免费一区二区三区在线观看| 欧美麻豆久久久久久中文| 国产精品毛片大码女人| 国产精品免费aⅴ片在线观看| 久久久久亚洲综合| 国产精品va在线| 国产精品一区二区久久精品| 99re成人精品视频| 欧美午夜电影一区| 亚洲免费在线精品一区| 欧美在线1区| 久久成人国产| 久久精品女人天堂| 激情综合在线| 欧美剧在线观看| 欧美一区=区| 欧美日韩精品免费| 久久亚洲影院| 欧美全黄视频| 亚洲免费av观看| 一区二区三区在线观看国产| 亚洲一区3d动漫同人无遮挡| 久久久青草青青国产亚洲免观| 老司机67194精品线观看| 亚洲午夜激情网站| 欧美视频一区二区三区…| 欧美在线综合视频| 亚洲国产国产亚洲一二三| 亚洲图片你懂的| 一区二区三区四区国产| 激情欧美一区二区| 亚洲第一天堂无码专区| 国产欧亚日韩视频| 欧美国产欧美亚州国产日韩mv天天看完整| 欧美成人影音| 久久国内精品视频| 欧美一区二区三区免费观看视频| 亚洲欧美日韩天堂| 亚洲精品国产日韩| 欧美中文字幕在线视频| 亚洲欧美日韩国产精品| 国产在线视频不卡二| 亚洲电影观看| 亚洲黄色在线观看| 国产一区二区三区四区hd| 国产一区二区三区四区老人| 国产精品久久久久久亚洲调教| 欧美中文字幕视频| 国产日韩精品一区二区三区| 欧美一级成年大片在线观看| 亚洲丰满少妇videoshd| 欧美日韩国产经典色站一区二区三区| 欧美一区久久| 欧美一区激情| 国外成人在线| 在线欧美不卡| 久久免费偷拍视频| 亚洲精品久久久久久久久久久| 久久成人免费电影| 国产精品久久久久久影视| 国产精品一二三视频| 国产精品免费一区二区三区在线观看| 亚洲人成在线免费观看| 极品尤物久久久av免费看| 欧美午夜一区二区三区免费大片| 国产在线欧美| 雨宫琴音一区二区在线| 欧美亚日韩国产aⅴ精品中极品| 一区二区av| 欧美久久综合| 欧美激情无毛| 一色屋精品亚洲香蕉网站| 国产精品久久久一区二区| 亚洲视频综合在线| 激情久久中文字幕| 欧美午夜精品理论片a级大开眼界| 狠狠色丁香久久婷婷综合丁香| 一区二区三区你懂的| 亚洲乱码精品一二三四区日韩在线| 欧美激情精品久久久久久变态| 久久精品国产96久久久香蕉| 欧美一区二区三区电影在线观看| 欧美激情女人20p| 欧美日本乱大交xxxxx| 国内精品久久久久久久果冻传媒| 亚洲国产精品精华液2区45| 国产精品久久国产愉拍| 一区二区三区www| 亚洲一区二区三区影院| 国产精品久久久久久久久久尿| 国产精品99久久久久久人| 国产伦精品一区二区三区免费| 亚洲国产精品成人一区二区| 国产精品美女一区二区| 久久久精品性| 久久久99久久精品女同性| 亚洲午夜日本在线观看| 性做久久久久久| 久久久久国产精品人| 亚洲精品久久7777| 久久视频这里只有精品| 久久性色av| 国产精品毛片高清在线完整版| 一本到高清视频免费精品| 野花国产精品入口| 狼人社综合社区| 日韩视频免费观看高清在线视频| 久久久久久精| 欧美影院一区| 欧美国内亚洲| 欧美日韩国产一区二区三区地区| 日韩特黄影片| 亚洲二区三区四区| 亚洲精品国精品久久99热一| 欧美激情a∨在线视频播放| 欧美日韩专区| 99国产精品久久久久久久久久| 免费观看国产成人| 日韩一区二区电影网| 亚洲小说欧美另类婷婷| 国产精品丝袜xxxxxxx| 亚洲欧美偷拍卡通变态| 亚洲午夜91| 亚洲精品一区二区三区av| 亚洲激情专区| 欧美视频在线看| 国内一区二区在线视频观看| 黄色成人在线网站| 欧美日韩在线三区| 国产精品视频久久一区| 老牛嫩草一区二区三区日本| 国产精品久久久久国产精品日日| 日韩一级黄色av| 国产伦精品一区二区三区免费迷| 国产女精品视频网站免费| 欧美视频一区在线| 亚洲自拍偷拍一区| 欧美xxx在线观看| 在线成人性视频| 欧美日韩精品欧美日韩精品| 在线中文字幕一区| 欧美视频在线不卡| 亚洲社区在线观看| 亚洲国产欧美在线| 国产一区二区三区无遮挡| 欧美国产大片| 99国产精品| 亚洲国产精品福利| 亚洲高清免费| 欧美夜福利tv在线| 国产欧美精品在线播放| 国语自产精品视频在线看8查询8| 另类尿喷潮videofree| 久久综合精品国产一区二区三区| 久久久99精品免费观看不卡| 伊人夜夜躁av伊人久久| 一片黄亚洲嫩模| 国产女优一区| 国产午夜亚洲精品不卡| 免费不卡在线观看av| 亚洲精品婷婷| 亚洲国产日韩在线一区模特|