日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫 Scene Recognition

時間:2024-01-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework 2 (Group) – Scene Recognition
Brief
This is a group coursework: please work in teams of four people.
Due date: Wednesday 10th January, 16:00.
Development data download: training.zip in the coursework (CW) folder
Testing data download: testing.zip in the CW folder
Required files: report.pdf; code.zip; run1.txt; run2.txt; run3.txt
Credit: 25% of overall module mark
Overview
The goal of this project is to introduce you to image recognition. Specifically, we will examine the
task of scene recognition starting with very simple methods -- tiny images and nearest neighbour
classification -- and then move on to techniques that resemble the state-of-the-art.
This coursework will run following the methodology used in many current scientific benchmarking
competitions/evaluations. You will be provided with a set of labelled development images from
which you are allowed to develop and tune your classifiers. You will also be provided with a set of
unlabelled images for which you will be asked to produce predictions of the correct class.
Details
You will need to write software that classifies scenes into one of 15 categories. We want you to
implement three different classifiers as described below. You will then need to run each classifier
against all the test images and provide a prediction of the class for each image.
Data
The training data consists of 100 images for each of the 15 scene classes. These are arranged in
directories named according to the class name. The test data consists of 2985 images. All the
images are provided in JPEG format. All the images are grey-scale, so you don't need to consider
colour.
Objective measure
The key classification performance indicator for this task is average precision; this is literally the
proportion of number of correct classifications to the total number of predictions (i.e. 2985).
Run conditions
As mentioned above, you need to develop and run three different classifiers. We'll refer to the
application of a classifier to the test data as a "run".
Run #1: You should develop a simple k-nearest-neighbour classifier using the "tiny image" feature.
The "tiny image" feature is one of the simplest possible image representations. One simply crops
each image to a square about the centre, and then resizes it to a small, fixed resolution (we
recommend 16x16). The pixel values can be packed into a vector by concatenating each image
row. It tends to work slightly better if the tiny image is made to have zero mean and unit length.
You can choose the optimal k-value for the classifier.
Run #2: You should develop a set of linear classifiers (an ensemble of 15 one-vs-all classifiers)
using a bag-of-visual-words feature based on fixed size densely-sampled pixel patches. We
recommend that you start with 8x8 patches, sampled every 4 pixels in the x and y directions. A
sample of these should be clustered using K-Means to learn a vocabulary (try ~500 clusters to
start). You might want to consider mean-centring and normalising each patch before
clustering/quantisation. Note: we're not asking you to use SIFT features here - just take the pixels
from the patches and flatten them into a vector & then use vector quantisation to map each patch
to a visual word.
Run #3: You should try to develop the best classifiers you can! You can choose whatever feature,
encoding and classifier you like. Potential features: the GIST feature; Dense SIFT; Dense SIFT in a
Gaussian Pyramid; Dense SIFT with spatial pooling (commonly known as PHOW - Pyramid
Histogram of Words), etc. Potential classifiers: Naive bayes; non-linear SVM (perhaps using a linear
classifier with a Homogeneous Kernel Map), ...
Run prediction format
The predictions for each run must be written to a text file named runX.txt (where X is the run
number) with the following format:
For example:
<image_name> <predicted_class>
<image_name> <predicted_class>
<image_name> <predicted_class>
...
0.jpg tallbuilding
1.jpg forest
2.jpg mountain
3.jpg store
4.jpg store
5.jpg bedroom
...
Restrictions
• You are not allowed to use the testing images for anything other than producing the final
predictions They must not be used for either training or learning feature encoding.
The report
The report must be no longer than 4 sides of A4 with the given Latex format for CW2, and must be
submitted electronically as a PDF. The report must include:
• The names and ECS user IDs of the team members
• A description of the implementation of the classifiers for the three runs, including information on
how they were trained and tuned, and the specific parameters used for configuring the feature
extractors and classifiers. We expect that your "run 3" section will be considerably longer than the
descriptions of runs 1 & 2.
• A short statement detailing the individual contributions of the team members to the coursework.
What to hand in
You need to submit to ECS Handin the following items:
• The group report (as a PDF document in the CVPR format same as CW2; max 4 A4 sides, no
appendix)
• Your code enclosed in a zip file (including everything required to build/run your software and to
train and use your classifiers; please don't include binaries or any of the images!)
• The run prediction files for your three runs (named "run1.txt", "run2.txt" and "run3.txt").
• A plain text file listing the user ids (e.g. xx1g20) of the members of your team; one per line.
Marking and feedback
Marks will be awarded for:
• Successful completion of the task.
• Well structured and commented code.
• Evidence of professionalism in implementation and reporting.
• Quality and contents of the report.
• The quality/soundness/complexity of approach used for run 3.
Marks will not be based on the actual performance of your approach (although you can expect to
lose marks if runs 1 and 2 are way off our expectations or you fail to follow the submission
instructions). We will open the performance rankings for run 3. !"#$
Standard ECS late submission penalties apply.
Individual feedback will be given to each team covering the above points. We will also give overall
feedback on the approaches taken in class when we announce the winner!
Useful links
• Matlab
o Image processing toolbox tutorials
o Recommended: VLFeat
§ Example of using VLFeat to perform classification
o Linear and non-linear SVMs
• Python
o numpy, PIL, sklearn (Scikit-learn), OpenCV, etc.
• C and C++
o OpenCV
o Recommended: VLFeat
o Example of using VLFeat to perform classification (Note this code is Matlab, but most of the
functionality is available in the C/C++ API)
• Java
o Recommended: OpenIMAJ
§ Chapter 12 of the tutorial deals with image classification
o BoofCV
Questions
If you have any problems/questions, use the Q&A channel on Teams 

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:COMP3173 23F&#160;代寫、代做 C++設計程序
  • 下一篇:代寫文華策略 代寫開拓者量化交易 代編金字塔公式
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产精品一区二区久激情瑜伽| 亚洲国产精品一区二区三区| 日韩视频在线观看| 亚洲国产日韩在线一区模特| 亚洲香蕉网站| 亚洲欧洲综合| 亚洲激情视频网| 欧美日韩一区二区在线视频| 欧美午夜一区二区福利视频| 午夜精品一区二区三区电影天堂| 亚洲美女在线国产| 亚洲视频第一页| 蜜臀av一级做a爰片久久| 亚洲影院高清在线| 国产精品v日韩精品v欧美精品网站| 亚洲性夜色噜噜噜7777| 国产精品成人播放| 国产真实乱偷精品视频免| 一区二区欧美在线| 亚洲欧美日韩精品综合在线观看| 久久综合伊人77777| 欧美极品aⅴ影院| 国产一区二区三区在线观看免费视频| 欧美综合激情网| 亚洲精品色婷婷福利天堂| 性欧美大战久久久久久久久| 校园激情久久| 毛片精品免费在线观看| 国产毛片精品国产一区二区三区| 久久激情久久| 先锋影音国产精品| 在线综合亚洲| 欧美日韩在线视频一区二区| 在线观看成人一级片| 欧美电影免费观看大全| 正在播放欧美视频| 欧美日韩亚洲系列| 欧美区高清在线| 欧美日韩国语| 亚洲乱码一区二区| 国产精品国产a| 国产亚洲欧美一区二区三区| 亚洲一区亚洲| 日韩小视频在线观看| 一区二区三区福利| 欧美日韩久久久久久| 亚洲香蕉在线观看| 极品少妇一区二区三区精品视频| 国产在线高清精品| 亚洲丰满少妇videoshd| 香蕉久久一区二区不卡无毒影院| 午夜免费日韩视频| 欧美精品三级| aa日韩免费精品视频一| 在线不卡a资源高清| 樱花yy私人影院亚洲| 亚洲欧美日韩一区二区在线| 亚洲一区二区三区免费在线观看| 国产日韩欧美不卡在线| 欧美成人午夜视频| 亚洲性感激情| 亚洲精品一线二线三线无人区| 卡通动漫国产精品| 伊人成人在线| 国产精品大片免费观看| 日韩一级二级三级| 午夜性色一区二区三区免费视频| 久久爱91午夜羞羞| 在线观看国产精品淫| 久久综合伊人77777| 欧美va天堂va视频va在线| 久久久综合视频| 最新日韩中文字幕| 亚洲在线视频网站| 欧美日韩一区高清| 99ri日韩精品视频| 欧美精品二区| 黑人巨大精品欧美黑白配亚洲| 欧美午夜免费电影| 国产精品午夜电影| 欧美精品自拍偷拍动漫精品| 午夜精品亚洲| 激情小说亚洲一区| 国产一区二区三区日韩欧美| 国产精品日日做人人爱| 亚洲无吗在线| 国产精品久久国产精麻豆99网站| 欧美xxxx在线观看| 欧美日韩国产天堂| 影音先锋中文字幕一区二区| 亚洲黄色性网站| 欧美四级在线| 久久九九国产精品怡红院| 国产亚洲欧美一区在线观看| 欧美中文字幕久久| 在线观看欧美一区| 在线观看视频亚洲| 久久青草欧美一区二区三区| 欧美日韩亚洲一区二区三区在线| 欧美日韩久久不卡| 亚洲欧美日韩精品久久| 亚洲激情婷婷| 亚洲欧美成人精品| 老司机精品视频一区二区三区| 亚洲精品久久视频| 亚洲人午夜精品| 欧美日韩在线免费观看| 亚洲破处大片| 国产精品中文在线| 亚洲国产婷婷香蕉久久久久久99| 欧美成人免费va影院高清| 亚洲精品综合精品自拍| 国产三级欧美三级日产三级99| 国产伦精品一区二区三区免费迷| 在线中文字幕不卡| 久久精品综合网| 国内精品久久久久影院色| 欧美激情一区二区三区在线视频观看| 翔田千里一区二区| 久久青草欧美一区二区三区| 欧美专区日韩专区| 久久影视三级福利片| 欧美日韩亚洲天堂| 欧美性jizz18性欧美| 久久一日本道色综合久久| 亚洲女人天堂成人av在线| 欧美韩日一区二区| 久久婷婷激情| 国产一区二区三区免费在线观看| 久久夜色精品国产亚洲aⅴ| 欧美在线免费观看亚洲| 欧美国产精品劲爆| 一区二区高清视频| 欧美激情中文字幕乱码免费| 中文在线一区| 欧美成年人视频网站欧美| 狠狠综合久久av一区二区小说| 欧美11—12娇小xxxx| 国产亚洲欧洲997久久综合| 欧美精品亚洲二区| 欧美福利视频在线观看| 麻豆精品视频在线观看| 久久精品91| 午夜一区二区三视频在线观看| 日韩视频在线观看免费| 亚洲欧美日韩中文视频| 夜夜嗨av一区二区三区中文字幕| 一区三区视频| 国产精品女主播一区二区三区| 午夜国产精品影院在线观看| 亚洲专区一区二区三区| 久久成人精品无人区| 久久久国产午夜精品| 午夜亚洲影视| 1024精品一区二区三区| 久久久亚洲高清| 久久超碰97中文字幕| 99ri日韩精品视频| 亚洲欧美日韩一区在线观看| 欧美一区二区三区四区夜夜大片| 伊人久久亚洲影院| 欧美激情国产日韩| 亚洲高清在线| 亚洲国产欧美一区二区三区同亚洲|