日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CS2850、代寫 c/c++語言編程

時間:2023-12-31  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS2850 Assessed Coursework 2
This assignment must be submitted by Friday, 5 January 2023, at 10 am. Feedback will be provided on the date provided in the coursework grid.
Learning outcomes assessed
In this assignment, you will implement a toy model of a dynamic memory allocator. To complete all the tasks you need to
• declare, define, and update variables and functions in C,
• use pointer arithmetic,
• know how a memory allocator works,
• read from stdin and write to stdout using getchar and printf, and • allocate and free memory using malloc.
Instructions
Submit this assignment using the Moodle submission link 202**4 CS2850 CW2: C mini-project by Fri- day, 5 January 2023, at 10 am. The submission system allows you to submit a single archive file, which should contain all your programs. Create a compressed directory, e.g. 202**4cs2850.zip, containing the four C files described in the following sections , step1.c, step2.c, step3.c, and step4.c. We suggest you write a separate file, functions.c, with all auxiliary functions. To include it in a task-specific program, e.g. step1.c, by write
#include "functions.c" 1
on top of the file. Your files will be recompiled and run in the submission directory with the compiler available on the teaching server. Be sure your name or ID does not appear anywhere in your submission.
Academic misconduct
Coursework submissions are routinely checked for academic misconduct (working together, copying from sources, etc.). Penalties can range from a 10% deduction of the assignment mark, zero for the assignment or the case being referred to a Senior Vice-Principal to make a decision (for repeat offences). Further details can be found here.
Introduction
In this assignment, you write a program that simulates a dynamic memory allocator. The process address space is represented by an array of characters, memory. Given a size in bytes, len, the allocator scans the array to find a free memory block of size len and returns the index of the start of the block. For simplicity, the program maintains an integer array of the same size as memory to store the sizes of the allocated blocks. The address space is represented by
 1

 struct space {
 };
char *memory; int *sizes; int len;
where memory and sizes are pointers to the first entry of the character and integer arrays and len is their length. In the dynamic version of the program, the program stores an arbitrary number of arbitrary sentences entered by a user on standard input. The size of the memory space grows when needed. At the beginning, the allocator stores all blocks one after the other. When some blocks are freed, allocating new blocks at the end becomes inefficient. The allocator should search the space for the first block compatible with the required size. Your implementation should follow the steps described in the next sections. Save a new C file, step#.c, for each section. Each program should compile without errors and produce the expected output. After completing a section, test your implementation with Valgrind. Even if there are no memory leaks, Valgrind may outline hidden execution errors. Try to understand and fix all of them.
Example. If the initial size of the memory array is 10 and you use an input file, input.txt, containing the following lines
a run of the final program should print
0000000000 1 2 0000000000000000000000000000000000000000000000 3 Brian Kernighan++ 4 17///////////////00000000000000000000000000000 5 Brian Kernighan++CS2850++ 6 17///////////////8///////000000000000000000000 7 Brian Kernighan++ D e n n i s Ritchie++ 8 17///////////////0000000016//////////////00000 9
Brian Kernighan++and++ D e n n i s Ritchie++ 10 17///////////////5////00016//////////////00000 11 12 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 13 Brian Kernighan++and++ Dennis Ritchie++The C Programming Language++ 14 17///////////////5////00016//////////////28//////////////////////////0000000000000000000000000 15 16 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 17
on standard output. Note that the program automatically frees the sentence CS2500. The memory grows when the user enters the sentences Brian Kerninghan and C Programming Language. The allocator saves the sentence and in the first suitable available space. To print memory and sizes, you can use printMemory and printSizes provided in the Appendix of this document or in Supporting code for 202**4 CS2850 CW2.
Step 1: Initialization (25 marks)
Create a file with all auxiliary functions called functions.c. On top of it, write the statements for including unistd.h and stdlib.h. Below those, define the following macros,
1 2 3 4
1 2 3 4 5
 Brian Kernighan
 CS2850
Dennis Ritchie
and
The C Programming Language
1 2 3 4 5
                  #define BUSY ’+’ #define FREE ’ ’ #define BUSYSIZE --1
 #define FREESIZE 0
2

and the structure defined above. You will use BUSY and FREE to mark the allocated and free entries of memory and BUSYSIZE and FREESIZE to mark the allocated (non-starting) and free entries of sizes. The first entry of an allocated block block is marked with the length of the block in sizes. To complete this section’s task you need to implement 2 functions,
1. initializeMemory, which accepts an integer memSize and a pointer to the memory struct, mem,asinputs,allocatestwoblocksofsizememSize * sizeof(char)andmemSize * sizeof(char) using malloc, makes memory and sizes point to these blocks, sets len to memSize, initializes
the arrays by marking all entries with FREE and FREESIZE, and print memory and sizes by calling printMemory and printSizes.
2. cleanMemory, which accepts a pointer to the memory struct, mem, as an input, replace all entries of memory and sizes with FREE and FREESIZE, print memory and sizes by calling printMemory and printSizes, and free the allocated memory by calling free.
Test your implementation by compiling and running q1.c in Supporting code for 202**4 CS2850 CW2. The output should be
 00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
 00000000000000000000000000000000000000000000000000
Before proceeding, make sure Valgrind does not detect execution errors or memory leaks.
Step 2: Stack Allocator (25 marks)
In this section, the task is to implement a stack-like allocator and de-allocator. This is different from the heap-like allocator you will implement in the next section because a new memory block is always allocated at the end of the previous one. The de-allocator takes the index of the first entry of the block to be deallocated and removes its content by setting the block entries back to FREE (in memory) and FREE (in FREESIZE). To complete this section’s task, you need to implement two functions,
1. int stackAllocator, which accepts an integer nbytes and a pointer to the memory struct, mem, as inputs, searches for the first entry of sizes marked with FREESIZE, check whether there are nbytes available entries after it, writes nbytes on that entry of sizes, writes BUSYSIZE on the nbytes − 1 following entries of sizes, finds the corresponding nbytes entries in memory and mark them with BUSY, and returns the index of the first entry of the newly allocated block, and
2. void deallocator, which accepts an integers, p, and a pointer to the memory struct, mem, as inputs, find the location corresponding to p in sizes, read the block length, nbytes, from that entry, and sets the nbytes entries of memory starting at p to FREE and the corresponding nbytes entries of sizes to FREESIZE.
If the first entry marked with FREESIZE in sizes is too close to the end of the array, i.e. if there are not nbytes entries of sizes marked with FREESIZE after it, stackAllocator should return mem->len. This allows you to check from the program if the memory has been successfully allocated before writing on it. The deallocator should not return anything. Test your implementation by
3
1 2 3 4 5 6

compiling and running q2.c in Supporting code for 202**4 CS2850 CW2. All string facilities are given in the appendix or in Supporting code for 202**4 CS2850 CW2. The output of the program should be
1 2 3 4 5 6 7 8 9 10
 00000000000000000000000000000000000000000000000000
Brian Kernighan+++++
 20//////////////////000000000000000000000000000000 Brian Kernighan+++++CS2850+++++ 20//////////////////11/////////0000000000000000000 Brian Kernighan+++++ 20//////////////////000000000000000000000000000000
 00000000000000000000000000000000000000000000000000
The third sentence, Dennis Ritchie, is not allocated because there is not enough available space. Check that the program behaves correctly even in such situations by running the binary with Valgrind.
Step 3: Heap Allocator (25 marks)
In this section, you rewrite the allocator to make it a heap-like allocator, i.e. to let the program allocate memory in the free space left by previous frees. To complete this section’s task, you need to implement two functions,
1. int spaceScanner, which takes an integer, nbytes, and a pointer to the memory structure, mem, as inputs, finds the first entry of sizes that is marked with FREESIZE and has nbytes entries also marked with FREESIZE after it, and returns the index of the corresponding entry of memory if the search is successful and mem->len otherwise, and
2. int heapAllocatorQ3, which has the same inputs as stackAllocation, calls spaceScanner to obtain the start index, p, of a suitable block, sets the nbytes entries of memory after p to FREE and the corresponding nbytes entries of sizes to FREESIZE, and returns p.
Test your implementation by compiling and running q3.c in Supporting code for 202**4 CS2850 CW2with memSize set to 50. The output should be
 00000000000000000000000000000000000000000000000000 Brian Kernighan++ 17///////////////000000000000000000000000000000000 Brian Kernighan++CS2850++
 17///////////////8///////0000000000000000000000000 Brian Kernighan++ D e n n i s Ritchie++ 17///////////////0000000016//////////////000000000 Brian Kernighan++ D e n n i s Ritchie++ 17///////////////0000000016//////////////000000000 Brian Kernighan++and++ D e n n i s Ritchie++
 17///////////////5////00016//////////////000000000 00000000000000000000000000000000000000000000000000
The sentence and is now allocated in the free space once occupied by the sentence CS2850. The sentence The C Programming Language is not allocated because the memory is not big enough. You will fix this problem in the next section.
4
1 2 3 4 5 6 7 8 9 10 11 12 13

Step 4: User interactions (25 marks)
Before making the program interactive, you need a function that increases the size of the memory if needed. In a real process, this means requiring the intervention of the Operating System (OS) through a system call. In this toy model, you use mallloc to simulate the OS intervention by reallocating memory and size. You also have to parse the input sentences and save them into strings. As you do not want to restrict the length of a user sentence, you need to buffer it into a dynamically allocated string that grows as new characters arrive. To complete this section’s task, you need two implement two functions
1. void increaseMemory which takes an integer, nbytes, and a pointer to the memory struc- ture, mem, as inputs, computes the length of the new memory, newLen, using
1 2 3
 int newLen = mem-->len;
while (newLen -- mem-->len < nbytes)
        newLen = 2 * (newLen + 1);
saves the content of memory, sizes, and len into three temporary variables, allocates a new memory space by calling initializeMemory(newLen, mem), copies the content of the temporary variable into the newly initialized memory, and free the old memory using free, and
2. int readString, which takes a pointer to a string, i.e. a pointer to a pointer to a character, s, as an input, calls malloc(1) to allocate a starting string, stores it in *s, gets characters from the terminal by calling getchar until you reach a new line character or EOF, reallocates the string to accommodate each new character through
 len++;
 *s = malloc(len + 1); char *temp = *s; copyString(temp, s, len); free(temp);
where len is the length of the string before attaching the new character, stores the new character in the len-th entry of *s, null terminates the final string, and returns 1 if the last character is a new line character and 0 if the last character is EOF.
To copy the temporary integer array into the newly allocated size array, sizes, write a function, copyArray(int *old, int *new, int len), by adapting copyString given in the appendix. You also need to modify heapAllocatorQ3. Instead of returning mem->len if spaceScanner does not find a suitable free block, the function should call increaseMemory until such a block becomes available. For example, you can replace the early-return statement of the old implementation with
1 2 3 4 5
 int t0;
while ((t0 = spaceScanner(nbytes, mem))== mem-->len) increaseMemory(nbytes, mem
);
Test your implementation by running the following program. Test your implementation by com- piling and running q4.c in Supporting code for 202**4 CS2850 CW2. The deallocator removes the second sentence of each group of three sentences after the user enters the third one. A sample output of this program is given in the section called Introduction.
Marking criteria
5
1 2

Full marks will be awarded for correct answers to the above questions. Submissions are assessed on functionality and coding style. Try to write readable, well-formatted and well-commented code. More importantly, all your programs must be compiled using gcc -Wall -Werror -Wpedantic and run without errors on linux.cim.rhul.ac.uk. To spot possible execution issues, run the programs with Valgrind and check that the end of the output is
... == ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0) 1
Before submitting, test your code with the assignment Moodle Code Checker. Passing all tests, however, will not guarantee you get full marks. Please use the CS2850 Piazza Forum to post any specific questions.
Extensions
This assignment is subject to College policy on extensions. If you believe you require an extension please read the documentation carefully and guidelines here
Extenuating circumstances
If you submit an assessment and believe that the standard of your work was substantially affected by your current circumstance then you can apply for Extenuating Circumstances. Details on how to apply for this can be found here. Read the accompanying documentation on the above link carefully. Please note decisions on Extenuating Circumstances are made at the end of the academic year.
Late Submission
In the absence of acceptable extenuating cause, late submission of work will be penalised as follows: 1. for work submitted up to 24 hours late, the mark will be reduced by ten percentage marks; 2. for work submitted more than 24 hours late, the maximum mark will be zero.
A Auxiliary functions
Here you can find a possible implementation of the string-handling and printing facilities you need for this assignment. The code is also available in Supporting code for 202**4 CS2850 CW2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
  void copyString(char *sIn, char *sOut, int len) { int t = 0;
while (t < len) {
*(sOut + t) = *(sIn + t);
 } }
int stringLen(char *s) { int t = 0;
t++;
 }
while (*(s + t) != ’\0’) t++; return t;
void printMemory(struct space *mem) { int i = 0;
6

 while (i < mem-->len) {
 }
printf("%c", *(mem-->memory + i)); i++;
} printf("\n");
 void printSizes(struct space *mem) { int i = 0;
int c;
while (i < mem-->len) {
int n = *(mem-->sizes + i);
 int t = 10000; while (n > 9) {
c = n/t;
n = n -- c * t; t = t / 10;
if (c) {
 } }
c= n%10+’0’;
c= c%10+’0’; printf("%c", c); i++;
 }
        printf("%c", c);
        i++;
} printf("\n");
The plain text version of all codes in this document is available on the assignment Moodle page 202**4 CS2850 CW2: C mini-project.
B Pseudocode
Here you can find the pseudocode of the functions you need to implement in this assignment.
1: function void initializeMemory(int len, struct space *mem)
2: let mem->memory point to a dynamically allocated array of length len* sizeof(char)
3: let mem->sizes point to a dynamically allocated array of length len * sizeof(int)
4: set mem->len to len
5: i←0
6: while i is smaller than mem->len do
7: set the i-th entry of mem->memory to FREE
8: set the i-th entry of mem->sizes to FREESIZE
9: i←i+1
10: print mem->memory using printMemory
11: print mem->sizes using printSizes
1: function void cleanMemory(struct space *mem) 7
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ** 33 34 35 36 3**8 39 40 41 42 43 44 45

2: 3: 4: 5: 6: 7: 8: 9:
10:
1: 2: 3:
4: 5:
6: 7: 8: 9:
10: 11: 12: 13:
1: 2: 3: 4: 5: 6: 7: 8: 9:
1: 2: 3: 4: 5: 6:
7:
i←0
while i is smaller than mem->len do
set the i-th entry of mem->memory to FREE
set the i-th entry of mem->sizes to FREESIZE i←i+1
print mem->memory using printMemory print mem->sizes using printSizes free mem->memory
free mem->sizes
function int stackAllocator(int nbytes, struct space *mem) t0 ← 0
while t0 + nbytes is smaller than mem->len and the t0-th entry of mem->sizes is not FREESIZE do
t0 ← t0 + 1
if t0+ nbytes equals mem->len then
return mem->len t←0
while t is smaller than nbytes and t0 + t is smaller than mem->len do set the (t0 + t)-th entry of mem->memory to BUSY
set the (t0 + t)-th entry of mem->sizes to BUSYSIZE
t←t+1
set the t0-th entry of mem->sizes to nbytes return t0
function void deallocator(t0, struct space *mem) if t0 equals mem->len or is negative then
return
let nbytes be the value stored in the t0-th location of mem->sizes t←0
while t is smaller than nbytes do
set the (t0 + t)-th entry of mem->memory to FREE
set the (t0 + t)-th entry of mem->sizes to FREESIZE t←t+1
function int spaceScanner(int nbytes, struct space *mem) t0 ← 0
do
s←0
while s = 0 and t0 is smaller than mem->len do
t←0
while t0 +t is smaller than mem->len and the (t0 +t)-th entry of mem->sizes is FREESIZE
t←t+1
8

8:
9: 10: 11: 12:
1: 2: 3: 4: 5: 6: 7: 8: 9:
10: 11:
1: 2: 3: 4:
5: 6: 7: 8: 9:
10: 11: 12: 13:
1: 2: 3: 4: 5:
6: 7: 8: 9:
10:
if t is larger than nbytes then s←1
else
t0 ← t0 + 1 return t0
function int heapAllocatorQ3(int nbytes, struct space *mem) (for Q3) t0 ← spaceScanner(nbytes, mem)
if t0 = mem->len then
return t0 t←0
while t is smaller than nbytes do
set the (t0 + t)-th entry of mem->memory to BUSY
set the (t0 + t)-th entry of mem->sizes to BUSYSIZE t←t+1
set the t0-th entry of mem->sizes to nbytes return t0
function void increaseMemory(int nbytes, struct space *mem)
t ← mem->len
while the difference between t and mem->len is smaller than nbytes do
t ← 2(t + 1)
let s be a pointer to char s ←mem->memory
let a be a pointer to int a ←mem->sizes
l ←mem->len
call initializeMemory with arguments t and mem
copy the content of the character array pointed by s into mem->memory using copyString copy the content of the integer array pointed by a into mem->sizes using copyArray freesanda
function int heapAllocator(int nbytes, struct space *mem) (for Q4) t0 ←spaceScanner(nbytes, mem)
while t0 equals mem->len do
increaseMemory(nbytes, mem)
t0 ← spaceScanner(nbytes, mem)
t←0
while t is smaller than nbytes do
set the (t0 + t)-th entry of mem->memory to BUSY
set the (t0 + t)-th entry of mem->sizes to BUSYSIZE t←t+1
9

11: set the t0-th entry of mem->sizes to nbytes
12: return t0
1: function int readString(char **s)
2: t←0
3: c ← getchar()
4: allocate 1 byte in the heap using malloc
5: let *s point to the newly allocated memory
6: let **s be the null character
7: while c is not a new line character or EOF do
8: p ←*s
9: t←t+1
10: allocate a character array of t + 1 bytes in the heap using malloc
11: let *s point to the newly allocated memory
12: copy the content of the character array pointed by p into ∗s
13: free p
14: set the t-th entry of the newly allocated character array to c
15: set the (t + 1)-th entry of the newly allocated character array to the null character
16: c ← getchar()
17: ifcisEOFthen
18: return 0
19: return 1
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫com6516、代做 java 設計編程
  • 下一篇:代寫同花順公式 代寫文華指標公式
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲精品一区二区三| 欧美高清日韩| 欧美精品久久久久久久久久| 国产色综合网| 国产精品自在欧美一区| 欧美成人综合在线| 国产欧美一区二区三区国产幕精品| 国产精品久久久久999| 国产精品久久久久婷婷| 在线观看视频欧美| 亚洲日本电影| 欧美chengren| 亚洲欧美另类中文字幕| 在线观看免费视频综合| 国产精品久久婷婷六月丁香| 久久久亚洲国产美女国产盗摄| 亚洲精品看片| 欧美一区二区视频观看视频| 午夜精品在线看| 亚洲观看高清完整版在线观看| 尤物yw午夜国产精品视频明星| 久久久一本精品99久久精品66| 欧美日韩mv| 欧美日韩综合视频网址| 亚洲黄色在线观看| 亚洲精品国产无天堂网2021| 欧美日韩国产免费| 亚洲欧美在线免费| 国产性天天综合网| 国产精品久久久久999| 国产精品xxxxx| 国语自产偷拍精品视频偷| 欧美一区亚洲二区| 国产精品伦子伦免费视频| 国产精品久久久久久久9999| 制服丝袜激情欧洲亚洲| 亚洲激情电影中文字幕| 亚洲欧美卡通另类91av| 一区二区三区精品视频| 欧美成人a视频| 99视频精品全国免费| 亚洲国产高清aⅴ视频| 亚洲国产另类精品专区| 国产精品每日更新| 一区二区三区在线视频观看| 精品1区2区3区4区| 久久久爽爽爽美女图片| 久久久蜜臀国产一区二区| 国产精品99久久99久久久二8| 美女诱惑黄网站一区| 一个人看的www久久| 亚洲影视综合| 国产视频自拍一区| 亚洲免费在线视频一区 二区| 99re8这里有精品热视频免费| 国产目拍亚洲精品99久久精品| 久久日韩精品| 国产精品久久久久久久9999| 久久久久久久一区二区| 麻豆精品精品国产自在97香蕉| 亚洲精品久久久久中文字幕欢迎你| 一区二区福利| 狠狠入ady亚洲精品经典电影| 久久riav二区三区| 欧美激情第4页| 麻豆freexxxx性91精品| 国产精品老女人精品视频| 亚洲一区二区三区在线观看视频| 欧美中文字幕第一页| 美女脱光内衣内裤视频久久网站| 国产精品国产三级国产专播品爱网| 一区二区三区视频免费在线观看| 亚洲午夜女主播在线直播| 悠悠资源网久久精品| 欧美视频免费| 久久裸体艺术| 欧美精品久久一区二区| 亚洲一区二区三区乱码aⅴ蜜桃女| 久久国产精品亚洲va麻豆| 韩国一区二区三区在线观看| 在线综合亚洲| 欧美极品欧美精品欧美视频| 99视频有精品| 亚洲欧美国产va在线影院| 中文无字幕一区二区三区| 亚洲乱码一区二区| 一本色道久久综合亚洲精品小说| 国产一区二区三区奇米久涩| 欧美激情一区二区三区四区| 免费在线观看成人av| 狠狠色狠狠色综合日日五| 欧美区国产区| 在线精品视频免费观看| 亚洲精品自在在线观看| 99v久久综合狠狠综合久久| 狠狠色狠狠色综合日日91app| 欧美精品91| 在线看欧美视频| 欧美主播一区二区三区美女 久久精品人| 亚洲精品午夜精品| 久久婷婷国产综合精品青草| 欧美日韩在线三级| 久久亚洲捆绑美女| 日韩性生活视频| aaa亚洲精品一二三区| 久久久一区二区三区| 欧美成人免费观看| 黑人一区二区三区四区五区| 午夜一区不卡| 99国产精品视频免费观看| 国产精品看片资源| 国产精品卡一卡二卡三| 国产亚洲欧美一区二区| 欧美午夜视频网站| 久久天天综合| 国产精品久久久999| 亚洲精品欧美在线| 欧美午夜在线| 亚洲第一主播视频| 老鸭窝91久久精品色噜噜导演| 久久国产福利国产秒拍| 亚洲精品国产精品国自产观看| 欧美激情视频一区二区三区不卡| 欧美大成色www永久网站婷| 午夜一级在线看亚洲| 国产一区二区观看| 久久网站免费| 亚洲欧美国产另类| 一色屋精品视频在线看| 国产精品久久久久久亚洲调教| 亚洲一区二区三区影院| 欧美韩日亚洲| 欧美日韩国产综合视频在线| 麻豆成人精品| 葵司免费一区二区三区四区五区| 在线观看日韩www视频免费| 欧美在线观看视频一区二区三区| 99精品国产一区二区青青牛奶| 欧美区视频在线观看| 国产欧亚日韩视频| 香蕉久久精品日日躁夜夜躁| 一本一本久久a久久精品综合麻豆| 国产精品美女视频网站| 激情欧美一区| 亚洲淫性视频| 在线亚洲精品福利网址导航| 久久精品久久综合| 亚洲第一中文字幕在线观看| 久久久欧美一区二区| 欧美精品国产精品日韩精品| 欧美亚男人的天堂| 国产精品电影观看| 99riav1国产精品视频| 国产婷婷色一区二区三区在线| 亚洲国产经典视频| 国产在线视频欧美一区二区三区| 国产精品一国产精品k频道56| 亚洲综合国产激情另类一区| 一区二区三区自拍| 日韩一级在线| 国产精品热久久久久夜色精品三区| 国产精品成人一区二区三区吃奶| 国产日韩欧美综合精品| 欧美日韩一区在线观看|