日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做MA2552、代寫Matlab編程設計

時間:2023-12-15  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ [0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f and the constants ak, solves the

O.D.E. (1). Note that some systems might have an infinite number of solutions. In

that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:INT3095代做、代寫Artificial Intelligence語言編程
  • 下一篇:代寫MGMT20005、代做Decision Analysis程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久青草欧美一区二区三区| 久久精品国产清高在天天线| 国产精品高精视频免费| 黄色国产精品一区二区三区| 亚洲精选国产| 久久久综合网站| 国产一区成人| 国产精品久久777777毛茸茸| 久久久人成影片一区二区三区观看| 免费在线欧美黄色| 精品二区视频| 国产九九精品视频| 欧美伦理一区二区| 黄色亚洲网站| 国内外成人免费激情在线视频| 亚洲精品日韩综合观看成人91| 日韩视频国产视频| 鲁大师成人一区二区三区| 亚洲一区成人| 亚洲免费一在线| 亚洲午夜在线观看| 国产嫩草一区二区三区在线观看| 亚洲性视频h| 在线日本欧美| 国产精品女主播一区二区三区| 亚洲免费不卡| 午夜亚洲精品| 久久成人免费视频| 亚洲精品一区二区三区樱花| 蜜桃精品一区二区三区| 一本色道久久综合亚洲精品小说| 久久gogo国模裸体人体| 国产欧美日韩一级| 亚洲人久久久| 欧美三级乱人伦电影| 在线日本成人| 欧美精品免费看| 亚洲福利视频专区| 国产精品麻豆成人av电影艾秋| 在线一区二区三区四区| 亚洲精品欧美精品| 在线观看av一区| 99视频在线观看一区三区| 欧美成人第一页| 9久草视频在线视频精品| 雨宫琴音一区二区在线| 欧美高清视频在线播放| 国产精品爱久久久久久久| 久久激五月天综合精品| 激情综合亚洲| 国产乱人伦精品一区二区| 一本一本久久a久久精品综合麻豆| 欧美性猛交视频| 久久亚洲欧美国产精品乐播| 久热精品在线| 久久精品国产91精品亚洲| 亚洲一区二区高清| 麻豆精品一区二区综合av| 激情五月综合色婷婷一区二区| 欧美日韩精品一区二区三区四区| 亚洲成人自拍视频| 久久露脸国产精品| 欧美性一二三区| 久久精品国产91精品亚洲| 欧美日韩在线精品一区二区三区| 久久精品女人天堂| 国产精品女同互慰在线看| 欧美日韩国产成人| 欧美高清在线精品一区| 亚洲三级观看| 亚洲片在线资源| 欧美小视频在线| 亚洲一区二区在线免费观看视频| 一本色道久久综合精品竹菊| 亚洲国产一区二区三区青草影视| 久久久久久久成人| 久久夜色精品国产| 亚洲免费一区二区| 亚洲人精品午夜在线观看| 国产视频丨精品|在线观看| 99视频一区| 一区二区三区精品久久久| 欧美精品自拍偷拍动漫精品| 国产精品久久一卡二卡| 免费不卡在线观看| 乱人伦精品视频在线观看| 99视频在线观看一区三区| 好吊一区二区三区| 欧美日韩免费一区二区三区| 欧美岛国激情| 亚洲一区黄色| 一区二区免费在线观看| 亚洲国产中文字幕在线观看| 亚洲视频电影在线| 久久激情婷婷| 国产精品久久亚洲7777| 欧美日韩国产一级| 激情视频亚洲| 午夜视频在线观看一区二区| 亚洲视频大全| 国产精品免费aⅴ片在线观看| 亚洲国产精品成人综合| 久久综合伊人77777麻豆| 国产精品裸体一区二区三区| 韩国精品主播一区二区在线观看| 欧美中文在线观看国产| 国内精品**久久毛片app| 中国成人亚色综合网站| 99在线观看免费视频精品观看| 国产欧美精品在线播放| 亚洲一区二区三区四区五区黄| 欧美日韩视频在线一区二区| 国产主播一区二区三区| 欧美一区二区三区在线免费观看| 中文亚洲欧美| 欧美精品首页| 亚洲欧美色婷婷| 欧美国产视频一区二区| 久久免费精品日本久久中文字幕| 久久久噜噜噜久久人人看| 在线视频日本亚洲性| 亚洲欧美日韩一区| 最新成人在线| 一区在线免费观看| 欧美成人亚洲成人日韩成人| 欧美中文字幕视频| 国产在线国偷精品产拍免费yy| 国产一区二区三区久久久| 久久久久看片| 一本色道久久综合狠狠躁篇怎么玩| 欧美电影在线观看完整版| 国产一在线精品一区在线观看| 在线电影欧美日韩一区二区私密| 国产精品99久久久久久www| 国产精品久久夜| 99在线热播精品免费99热| 精品二区久久| 欧美日韩精品福利| 免费精品99久久国产综合精品| 欧美一区深夜视频| 国产主播一区二区| 久久综合给合久久狠狠色| 国产亚洲一本大道中文在线| 美女日韩在线中文字幕| 国产精品国产一区二区| 久久久久九九九九| 亚洲精品久久久久久久久| 亚欧美中日韩视频| 销魂美女一区二区三区视频在线| 亚洲激情成人| 毛片一区二区| 亚洲国产美国国产综合一区二区| 久久国产欧美日韩精品| 久久一区免费| 欧美日韩国产精品成人| 亚洲在线网站| 免费黄网站欧美| 国产精品麻豆va在线播放| 另类春色校园亚洲| 欧美成人tv| 亚洲欧美一区二区视频| 玉米视频成人免费看| 亚洲砖区区免费| 另类酷文…触手系列精品集v1小说|