日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做MA2552、代寫Matlab編程設計

時間:2023-12-15  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ [0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f and the constants ak, solves the

O.D.E. (1). Note that some systems might have an infinite number of solutions. In

that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:INT3095代做、代寫Artificial Intelligence語言編程
  • 下一篇:代寫MGMT20005、代做Decision Analysis程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲全黄一级网站| 国产伦一区二区三区色一情| 久久电影一区| 久久综合给合久久狠狠狠97色69| 亚洲高清视频的网址| 久久久水蜜桃| 国产精品欧美风情| 美女福利精品视频| 狠狠色狠狠色综合人人| 欧美视频网址| 91久久夜色精品国产网站| 欧美极品一区二区三区| 午夜宅男久久久| 亚洲自拍偷拍视频| 欧美自拍偷拍| 久久久久久亚洲精品中文字幕| 99国内精品久久久久久久软件| 欧美色123| 日韩一级免费观看| 久久国产精品99久久久久久老狼| 欧美激情成人在线视频| 亚洲精品免费在线观看| 亚洲精品一二三区| 99精品视频一区| 亚洲在线免费视频| 在线看日韩欧美| 国产精品亚洲综合色区韩国| 欧美日韩国产一中文字不卡| 蜜臀久久久99精品久久久久久| 欧美日韩亚洲免费| 亚洲一区二区三区在线看| 国产精品videossex久久发布| 国产丝袜一区二区| 午夜精品亚洲一区二区三区嫩草| av成人动漫| 国产在线一区二区三区四区| 亚洲欧美日韩精品久久亚洲区| 午夜精品久久久久久久久久久久久| 久久一区二区三区av| 久久久综合网| 韩国精品在线观看| 国产精品亚洲аv天堂网| 一区二区不卡在线视频 午夜欧美不卡在| 久久久午夜电影| 伊人久久亚洲美女图片| 欧美日韩一区二区三区高清| 欧美在线观看一二区| 美玉足脚交一区二区三区图片| 欧美日韩国产综合视频在线观看| 蜜桃av一区| 欧美成人69av| 亚洲性夜色噜噜噜7777| 亚洲第一区中文99精品| 久久精品一本久久99精品| 亚洲免费人成在线视频观看| 欧美激情综合五月色丁香| 99伊人成综合| 日韩一级裸体免费视频| 欧美激情亚洲精品| 一区二区三区高清在线| 亚洲香蕉伊综合在人在线视看| 久久久久国产精品一区| 久久久青草婷婷精品综合日韩| 美脚丝袜一区二区三区在线观看| 国产日韩欧美91| 欧美成年网站| 国产精品久久久一区二区三区| 国产免费一区二区三区香蕉精| 国产午夜精品福利| 欧美风情在线| 欧美日韩国产色站一区二区三区| 欧美亚男人的天堂| 欧美日韩直播| 欧美视频二区36p| 在线成人黄色| 国产自产女人91一区在线观看| 在线视频欧美一区| 国产亚洲精品综合一区91| 欧美色播在线播放| 欧美成人伊人久久综合网| 毛片基地黄久久久久久天堂| 国产日韩综合| 久久久久久久一区二区| 你懂的视频一区二区| 日韩午夜精品视频| 夜夜嗨av一区二区三区四季av| 国产精品自拍在线| 亚洲一区二区三区在线视频| 91久久久久久久久久久久久| 亚洲狼人综合| 亚洲一区二区三区乱码aⅴ| 亚洲欧洲一区二区三区| 性刺激综合网| 亚洲一区二区网站| 欧美精品99| 亚洲少妇诱惑| 国产欧美一区二区三区在线老狼| 欧美视频手机在线| 99视频日韩| 亚洲国产精品va在线观看黑人| 国产精品国产三级国产专播精品人| 久久精品人人| 精久久久久久| 亚洲主播在线观看| 国产伦一区二区三区色一情| 久久精品久久99精品久久| 99re6热在线精品视频播放速度| 极品裸体白嫩激情啪啪国产精品| 国产亚洲人成网站在线观看| 老色鬼久久亚洲一区二区| 久久精彩免费视频| 久久国产视频网站| 国产亚洲精品久| 久久蜜桃av一区精品变态类天堂| 亚洲国产成人久久| 国产精品女人久久久久久| 国产欧美日韩亚洲| 亚洲福利在线视频| 欧美视频一区二区| 欧美黄色一级视频| 国产欧美日韩高清| 久久噜噜噜精品国产亚洲综合| 国产精品久久久久久一区二区三区| 激情婷婷欧美| 欧美一区二区三区喷汁尤物| 欧美日本国产视频| 国产一区免费视频| 亚洲专区在线| 国产日韩欧美自拍| 久久视频国产精品免费视频在线| 又紧又大又爽精品一区二区| 午夜精品三级视频福利| 欧美综合二区| 老鸭窝91久久精品色噜噜导演| 国产精品视频xxxx| 国产精品美女一区二区| 欧美精品1区| 欧美www视频在线观看| 国内激情久久| 欧美jizzhd精品欧美喷水| 国产综合色精品一区二区三区| 亚洲欧美日韩精品久久奇米色影视| 欧美在线观看www| 在线视频日本亚洲性| 欧美激情一区在线观看| 国产在线国偷精品产拍免费yy| 国模精品一区二区三区| 麻豆久久久9性大片| 免费成人高清视频| 99国产精品国产精品久久| 亚洲久久一区| 在线亚洲免费| 欧美三区免费完整视频在线观看| 国产精品青草综合久久久久99| 久久国产精品久久久久久电车| 国产日韩亚洲欧美综合| 欧美在线观看视频一区二区三区| 国产精品欧美日韩一区| 欧美精品日日鲁夜夜添| 久久婷婷久久| 亚洲电影免费观看高清完整版在线| 欧美一区影院| 亚洲性图久久| 日韩亚洲视频在线|