日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP5930M 代做、代寫 c++,java 程序語言

時間:2023-12-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Computing: assessment brief
   Module title
 Scientific Computation
  Module code
 COMP5930M
  Assignment title
 Coursework 2
  Assignment type and description
 Coursework assignment
  Rationale
 TBA
  Weighting
 20% of total mark
  Submission dead- line
 December 14th 2023 at 10:00
  Submission method
 Turnitin submission through Minerva
  Feedback provision
 Feedback provided on Minerva
  Learning outcomes assessed
 (i) Formulate and solve systems of nonlinear equations to solve challenging real-world problems arising from en- gineering and computational science; (ii) Implement al- gorithmic solutions to solve computational differential equation problems based on mathematical theory; (iii) Analyse computational linear algebra problems to iden- tify and implement the most efficient and scalable solu- tion algorithm to apply for large problems.
  Module lead
 Dr Toni Lassila
           1

1. Assignment guidance
Provide answers to the two exercises below. Answer both exercises.
2. Assessment tasks
Exercise 1: The Burgers’ equation models the propagation of a pres- sure wave in shock tube. It is a nonlinear partial-differential equation in one spatial dimension to find u(x, t) s.t.
∂u + u∂u = ν ∂2u, (1) ∂t ∂x ∂x2
where the boundary conditions u(a, t) = ua and u(b, t) = ub for all t, and the initial condition u(x, 0) = u0(x) need to be prescribed in order to obtain a well-posed problem. Here ν is the kinematic viscosity of the fluid. For ν = 0 we have the inviscid Burgers’ equation, and for ν > 0 we have the viscous Burgers’ equation.
(a) Applying the central difference formula to the second order deriva- tive in space, the upwind difference formula
􏰀Uk−Uk 􏰁
i−1
using implicit Euler’s method leads to the discrete formulation: Uk −Uk−1 􏰀Uk −Uk 􏰁 􏰀Uk −2Uk +Uk 􏰁
Fi(U)= i i +Uik i i−1 −ν i+1 i i−1 =0 ∆t h h2
(2) for i = 2,3,...,m−1 where the interval has been discretised with
m uniformly distributed nodes and a spatial grid size h. Implement the function F as a python subroutine fun burgers.py
        def fun_burgers( uk, ukp, dt, h, nu, ua, ub )
where uk is the vector Uk of size m, ukp is the previous time-step solution vector Uk−1, dt is the time-step ∆t, h is the spatial grid size parameter h, and nu is the kinematic viscosity ν. Include the boundary conditions ua and ub in the implementation. [6 marks]
2
Uik i
to the first order derivative in space, and discretising (1) in time
 h
   
(b) Derive the analytical formulas for the nonzero elements on row i of the Jacobian matrix for (2): [4 marks]
∂Fi , ∂Fi, ∂Fi . ∂Ui−1 ∂Ui ∂Ui+1
(c) Solve problem (2) numerically using your fun burgers.py and the PDE solver template solver burgers.py provided in the course- work folder. Use the viscosity value ν = 0.01, the time-step ∆t=0.01,thegridsizeh=0.01,andafinaltimeofT =1. The initial solution u(x, 0) should be taken as a unit step located at x = 0.1 (see below) and the boundary conditions as: u(0, t) = 1 and u(1, t) = 0.
   Figure 1: Initial condition u0(x) for the Burgers’ equation (1)
Plot the solution u(x, T ) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). [2 marks]
3

(d) The solution of Burgers’ equation (1) can be shown to be a (decay- ing) wavefront that travels from left to right at a constant velocity v. What is the approximate value of the numerical wavefront ve- locity vnum for ν = 0.01, ∆t = 0.01, and h = 0.01? Measure the approximate location of the wavefront using the point where the solution u(xmid) ≈ 0.5. [1 mark]
(e) Replace the discretisation of the nonlinear convection term with the downwind difference formula
􏰀Uk − Uk 􏰁
i (3)
and solve the problem with same parameters as in (c). Plot the solution u(x,T) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). What is the numerical wavefront velocity vnum in this case?
Now set ν = 0.001 and solve the problem again using the down- wind difference formula. What do you observe? Now solve the problem with ν = 0.001 using the original upwind difference for- mula and compare the results. What is the numerical wavefront velocity vnum in this case? [7 marks]
Uik i+1
h
 4

Exercise 2: Consider the anisotropic diffusion equation to find u(x, y) s.t.
􏰀 ∂2u ∂2u􏰁
− μx∂x2 +μy∂y2 =f(x,y), (x,y)∈(0,1)×(0,1), (4)
and the boundary condition u = 0 on Γ (the boundary of the unit square), where u is a scalar function that models the temperature of a heat-conducting object modelled here as a unit square and f(x,y) is a function modelling a heat source. The heat conductivity coefficients, μx > 0 and μy > 0, can have different magnitudes (anisotropy).
(a) Discretising the problem (4) using the second-order finite differ- ence formulas
∂2u ≈ ui,j−1 − 2ui,j + ui,j+1 .
Write the second-order finite difference stencil (similarly as in Tu- torial 7)
∂2u ≈ ui−1,j − 2ui,j + ui+1,j , ∂x2 h2
  ∂y2
−μx h2 −μy h2 = fi,j.
h2 􏰀ui−1,j − 2ui,j + ui+1,j 􏰁 􏰀ui,j−1 − 2ui,j + ui,j+1 􏰁
leads to the discretised form
  ?**7;
s11 s12 s13 ?**8; ?**8;
S=s s s?**8;  21 22 23?**8;
?**8; s s s?**9;
corresponding to this finite difference scheme. [4 marks] (b) Implement a python function source function.py
    def source_function( x, y, h )
that returns the right-hand side by evaluating the function:
f(x,y) :=
⭺**;1, ifx≥0.1andx≤0.3andy≥0.1andy≤0.3 0, otherwise
.
Include the source code in your answer. [3 marks] 5
31 ** 33
(5)

 Figure 2: Computational domain for problem (4) and the sub-region where the heat source is located (in red).
(c) Modify the solver from Tutorial 7 to numerically solve the diffusion problem (4) for the right-hand side (5).
Solve the linear problem AU = F using the conjugate gradient method (without preconditioning) with the diffusion coefficients μx = 1 and μy = 1, stopping tolerance tol = 10−6, and maxi- mum of 1000 CG iterations. You can use the CG implementation in scipy.sparse.linalg.cg for this problem or code your own implementation.
Plot the solution surface and include the plot in your answer. How many iterations does it take for CG to converge in this case?
[2 marks]
(d) Consider now the use of a preconditioner to accelerate the con- vergence of CG. The incomplete-LU preconditioner approximates the system matrix A ≈ LincUinc by performing Gaussian elimi- nation but setting to zero any elements that are smaller than a dropoff tolerance ε chosen by the user. You can use the imple- mentation provided in scipy.sparse.linalg.spilu to compute
6

the incomplete factors Linc and Uinc.
Write a python implementation myPCG.py of the preconditioned
conjugate gradient from Lecture 18:
            def myPCG( A, b, L, U, tol, maxit )
that solves the preconditioning step for the residual, Mzi+1 = LU zi+1 = ri+1 , using appropriate solution algorithms. Include the source code as part of your answer. [4 marks]
(e) Solve the problem (4) again using your preconditioned CG imple- mentation from (d). Use a dropout tolerance of ε = 0.1 for the incomplete LU-factorisation.
How many nonzero elements (nnz) do the factors Linc and Uinc have in this case?
How many PCG iterations does the problem take to converge to tol = 10−6 now?
[2 marks]
(f) Repeat the experiment from (e) with different values of the dif- fusion coefficients. Solve the problem (4) with μx = 0.1 and μx = 0.01, while keeping the other value at μy = 1. Solve the problem using PCG with the same ILU-preconditioner as before with a dropout tolerance of ε = 0.1. Plot the two respective solu- tions and the respective number of CG iterations. What do you observe?
[5 marks]
3. General guidance and study support
The MS Teams group for COMP53**M Scientific Computation will be used for general support for this assignment. If your question would reveal parts of the answer to any problem, please send a private message to the module leader on MS Teams instead. You can also use the tutorial sessions to ask questions about coursework.
4. Assessment criteria and marking process
Assessment marks and feedback will be available on Minerva within
three weeks of the submission deadline. Late submissions are allowed 7

within 14 days of the original deadline providing that a request for an extension is submitted before the deadline. Standard late penalties apply for submissions without approved extensions.
5. Presentation and referencing
When writing mathematical formulas, use similar notation and sym- bols as during the lectures and tutorials. Hand-written sections for mathematical notation are acceptable but need to be clearly readable.
You may assume theorems and other results that have been presented during lectures and tutorials as known. Any other theorems need to be cited using standard citation practice.
6. Submission requirements
This is an individual piece of work. Submit your answers through Tur- nitin as one PDF document (generated either in Word or with LaTeX). You may use hand-written and scanned pages for mathematical formu- las, but these need to be clearly legible and the document must contain at least some typeset text or Turnitin will reject it. All submissions will be checked for academic integrity.
7. Academic misconduct and plagiarism
Academic integrity means engaging in good academic practice. This involves essential academic skills, such as keeping track of where you find ideas and information and referencing these accurately in your work.
By submitting this assignment you are confirming that the work is a true expression of your own work and ideas and that you have given credit to others where their work has contributed to yours.
8. Assessment/marking criteria grid
Total number of marks is 40, divided as follows:
Exercise 1 (One-dimensional Burgers equation): 20 marks
Exercise 2 (Anisotropic diffusion and conjugate gradient): 20 marks
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:CAN201 代做、代寫 Python語言編程
  • 下一篇:代寫COM6471、代做 java 語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久久久久国产精品mv| 亚洲蜜桃精久久久久久久| 欧美日本一区二区视频在线观看| 日韩一级成人av| 欧美成人69av| 亚洲娇小video精品| 亚洲理论在线观看| 欧美亚洲综合另类| 午夜国产精品视频| 国产九色精品成人porny| 99re66热这里只有精品4| 亚洲一区二区在线看| 欧美日韩欧美一区二区| 亚洲毛片一区| 国产一区二区三区高清播放| 欧美成人免费观看| 国产专区欧美精品| 小黄鸭精品密入口导航| 国产午夜精品久久久久久免费视| 一区二区三区国产盗摄| 久久精品麻豆| 免费亚洲电影| 国内精品美女在线观看| 亚洲电影天堂av| 欧美麻豆久久久久久中文| 久久久综合激的五月天| 欧美一区视频在线| 亚洲欧美久久| 一本综合精品| 久久人人爽人人| 亚洲精品一区二区在线观看| 久久综合狠狠综合久久激情| 欧美男人的天堂| 性色av一区二区怡红| 国外成人网址| 国产精品国产三级国产专区53| 国产三级精品三级| 久久精品动漫| 亚洲欧美日韩电影| 9色国产精品| 国产亚洲综合性久久久影院| 每日更新成人在线视频| 国产精品美女在线观看| 欧美黑人国产人伦爽爽爽| 一本色道久久综合狠狠躁的推荐| 欧美日韩福利在线观看| 欧美特黄一级| 午夜激情亚洲| 欧美一级一区| 欧美另类专区| 激情综合中文娱乐网| 亚洲国产精品成人| 国产精品v片在线观看不卡| 国产精品一区二区久久久久| 欧美日韩国产综合网| 欧美在线观看视频一区二区| 亚洲一区视频| 中文精品在线| 欧美日韩久久| 国产精品成人一区二区三区吃奶| 性欧美xxxx视频在线观看| 国产精品入口夜色视频大尺度| 久久精品国产一区二区三区免费看| 99re热这里只有精品免费视频| 国产视频观看一区| 国产日韩一区欧美| 久久人人爽人人爽爽久久| 激情成人综合网| 麻豆九一精品爱看视频在线观看免费| 欧美日韩一区二区国产| 久久久久综合一区二区三区| 免费日韩av| 午夜宅男久久久| 日韩一级欧洲| 欧美丝袜一区二区三区| 玖玖玖免费嫩草在线影院一区| 午夜精品久久久久影视| 亚洲欧美三级在线| 国产欧美精品va在线观看| 韩曰欧美视频免费观看| 亚洲国产精品欧美一二99| 蜜桃av一区二区| 亚洲综合视频在线| 国产午夜亚洲精品理论片色戒| 久久不射2019中文字幕| 一区三区视频| 欧美日韩一区高清| 亚洲精品乱码久久久久久日本蜜臀| 亚洲国产精品成人精品| 亚洲美女av网站| 亚洲精品视频一区二区三区| 亚洲狠狠婷婷| 国产一区在线播放| 欧美色欧美亚洲另类二区| 欧美国产一区二区三区激情无套| 欧美激情久久久久| 亚洲精选国产| 国产精品久久久久久久7电影| 午夜精品视频在线| 欧美破处大片在线视频| 国产欧美日韩视频在线观看| 亚洲蜜桃精久久久久久久| 久久精品人人做人人综合| 99视频在线精品国自产拍免费观看| 羞羞视频在线观看欧美| 中文一区二区| 欧美一区二区免费| 亚洲视频福利| 夜夜躁日日躁狠狠久久88av| 国产精品自拍小视频| 久久综合色天天久久综合图片| 久久中文字幕一区| 亚洲一区二区三区免费视频| 亚洲国产欧美一区二区三区久久| 欧美激情免费在线| 亚洲综合清纯丝袜自拍| 一区二区三区免费看| 国产精品欧美久久| 国产日韩欧美二区| 国产精品白丝黑袜喷水久久久| 亚洲国产电影| 日韩一区二区精品视频| 国产欧美二区| 国产午夜精品视频免费不卡69堂| 午夜精彩国产免费不卡不顿大片| 国产午夜精品久久久久久久| 欧美精品在线免费| 欧美午夜不卡在线观看免费| 亚洲精品一区二区在线观看| 亚洲大胆在线| 国产精品户外野外| 一本一本久久| 亚洲欧美日韩爽爽影院| 精品av久久707| 欧美亚洲三区| 午夜视频精品| 午夜伦理片一区| 亚洲免费视频中文字幕| 欧美精品在线观看一区二区| 国产精品网曝门| 国产又爽又黄的激情精品视频| 美女诱惑黄网站一区| 亚洲人成欧美中文字幕| 在线视频你懂得一区二区三区| 欧美一级黄色录像| 樱桃视频在线观看一区| 欧美国产免费| 亚洲国产精品va在看黑人| 亚洲欧美日韩在线观看a三区| 欧美mv日韩mv国产网站| 久久精品国产亚洲一区二区| 亚洲一区在线直播| 久久精品导航| 亚洲韩日在线| 99在线热播精品免费| 亚洲精品在线免费观看视频| 亚洲成人资源网| 欧美日韩一二三区| 亚洲美女精品成人在线视频| 久久精品亚洲国产奇米99| 欧美日韩亚洲一区在线观看| 欧美高清日韩| 日韩天堂在线观看| 国产精品久久国产三级国电话系列|