日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP5930M 代做、代寫 c++,java 程序語言

時間:2023-12-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Computing: assessment brief
   Module title
 Scientific Computation
  Module code
 COMP5930M
  Assignment title
 Coursework 2
  Assignment type and description
 Coursework assignment
  Rationale
 TBA
  Weighting
 20% of total mark
  Submission dead- line
 December 14th 2023 at 10:00
  Submission method
 Turnitin submission through Minerva
  Feedback provision
 Feedback provided on Minerva
  Learning outcomes assessed
 (i) Formulate and solve systems of nonlinear equations to solve challenging real-world problems arising from en- gineering and computational science; (ii) Implement al- gorithmic solutions to solve computational differential equation problems based on mathematical theory; (iii) Analyse computational linear algebra problems to iden- tify and implement the most efficient and scalable solu- tion algorithm to apply for large problems.
  Module lead
 Dr Toni Lassila
           1

1. Assignment guidance
Provide answers to the two exercises below. Answer both exercises.
2. Assessment tasks
Exercise 1: The Burgers’ equation models the propagation of a pres- sure wave in shock tube. It is a nonlinear partial-differential equation in one spatial dimension to find u(x, t) s.t.
∂u + u∂u = ν ∂2u, (1) ∂t ∂x ∂x2
where the boundary conditions u(a, t) = ua and u(b, t) = ub for all t, and the initial condition u(x, 0) = u0(x) need to be prescribed in order to obtain a well-posed problem. Here ν is the kinematic viscosity of the fluid. For ν = 0 we have the inviscid Burgers’ equation, and for ν > 0 we have the viscous Burgers’ equation.
(a) Applying the central difference formula to the second order deriva- tive in space, the upwind difference formula
􏰀Uk−Uk 􏰁
i−1
using implicit Euler’s method leads to the discrete formulation: Uk −Uk−1 􏰀Uk −Uk 􏰁 􏰀Uk −2Uk +Uk 􏰁
Fi(U)= i i +Uik i i−1 −ν i+1 i i−1 =0 ∆t h h2
(2) for i = 2,3,...,m−1 where the interval has been discretised with
m uniformly distributed nodes and a spatial grid size h. Implement the function F as a python subroutine fun burgers.py
        def fun_burgers( uk, ukp, dt, h, nu, ua, ub )
where uk is the vector Uk of size m, ukp is the previous time-step solution vector Uk−1, dt is the time-step ∆t, h is the spatial grid size parameter h, and nu is the kinematic viscosity ν. Include the boundary conditions ua and ub in the implementation. [6 marks]
2
Uik i
to the first order derivative in space, and discretising (1) in time
 h
   
(b) Derive the analytical formulas for the nonzero elements on row i of the Jacobian matrix for (2): [4 marks]
∂Fi , ∂Fi, ∂Fi . ∂Ui−1 ∂Ui ∂Ui+1
(c) Solve problem (2) numerically using your fun burgers.py and the PDE solver template solver burgers.py provided in the course- work folder. Use the viscosity value ν = 0.01, the time-step ∆t=0.01,thegridsizeh=0.01,andafinaltimeofT =1. The initial solution u(x, 0) should be taken as a unit step located at x = 0.1 (see below) and the boundary conditions as: u(0, t) = 1 and u(1, t) = 0.
   Figure 1: Initial condition u0(x) for the Burgers’ equation (1)
Plot the solution u(x, T ) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). [2 marks]
3

(d) The solution of Burgers’ equation (1) can be shown to be a (decay- ing) wavefront that travels from left to right at a constant velocity v. What is the approximate value of the numerical wavefront ve- locity vnum for ν = 0.01, ∆t = 0.01, and h = 0.01? Measure the approximate location of the wavefront using the point where the solution u(xmid) ≈ 0.5. [1 mark]
(e) Replace the discretisation of the nonlinear convection term with the downwind difference formula
􏰀Uk − Uk 􏰁
i (3)
and solve the problem with same parameters as in (c). Plot the solution u(x,T) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). What is the numerical wavefront velocity vnum in this case?
Now set ν = 0.001 and solve the problem again using the down- wind difference formula. What do you observe? Now solve the problem with ν = 0.001 using the original upwind difference for- mula and compare the results. What is the numerical wavefront velocity vnum in this case? [7 marks]
Uik i+1
h
 4

Exercise 2: Consider the anisotropic diffusion equation to find u(x, y) s.t.
􏰀 ∂2u ∂2u􏰁
− μx∂x2 +μy∂y2 =f(x,y), (x,y)∈(0,1)×(0,1), (4)
and the boundary condition u = 0 on Γ (the boundary of the unit square), where u is a scalar function that models the temperature of a heat-conducting object modelled here as a unit square and f(x,y) is a function modelling a heat source. The heat conductivity coefficients, μx > 0 and μy > 0, can have different magnitudes (anisotropy).
(a) Discretising the problem (4) using the second-order finite differ- ence formulas
∂2u ≈ ui,j−1 − 2ui,j + ui,j+1 .
Write the second-order finite difference stencil (similarly as in Tu- torial 7)
∂2u ≈ ui−1,j − 2ui,j + ui+1,j , ∂x2 h2
  ∂y2
−μx h2 −μy h2 = fi,j.
h2 􏰀ui−1,j − 2ui,j + ui+1,j 􏰁 􏰀ui,j−1 − 2ui,j + ui,j+1 􏰁
leads to the discretised form
  ?**7;
s11 s12 s13 ?**8; ?**8;
S=s s s?**8;  21 22 23?**8;
?**8; s s s?**9;
corresponding to this finite difference scheme. [4 marks] (b) Implement a python function source function.py
    def source_function( x, y, h )
that returns the right-hand side by evaluating the function:
f(x,y) :=
⭺**;1, ifx≥0.1andx≤0.3andy≥0.1andy≤0.3 0, otherwise
.
Include the source code in your answer. [3 marks] 5
31 ** 33
(5)

 Figure 2: Computational domain for problem (4) and the sub-region where the heat source is located (in red).
(c) Modify the solver from Tutorial 7 to numerically solve the diffusion problem (4) for the right-hand side (5).
Solve the linear problem AU = F using the conjugate gradient method (without preconditioning) with the diffusion coefficients μx = 1 and μy = 1, stopping tolerance tol = 10−6, and maxi- mum of 1000 CG iterations. You can use the CG implementation in scipy.sparse.linalg.cg for this problem or code your own implementation.
Plot the solution surface and include the plot in your answer. How many iterations does it take for CG to converge in this case?
[2 marks]
(d) Consider now the use of a preconditioner to accelerate the con- vergence of CG. The incomplete-LU preconditioner approximates the system matrix A ≈ LincUinc by performing Gaussian elimi- nation but setting to zero any elements that are smaller than a dropoff tolerance ε chosen by the user. You can use the imple- mentation provided in scipy.sparse.linalg.spilu to compute
6

the incomplete factors Linc and Uinc.
Write a python implementation myPCG.py of the preconditioned
conjugate gradient from Lecture 18:
            def myPCG( A, b, L, U, tol, maxit )
that solves the preconditioning step for the residual, Mzi+1 = LU zi+1 = ri+1 , using appropriate solution algorithms. Include the source code as part of your answer. [4 marks]
(e) Solve the problem (4) again using your preconditioned CG imple- mentation from (d). Use a dropout tolerance of ε = 0.1 for the incomplete LU-factorisation.
How many nonzero elements (nnz) do the factors Linc and Uinc have in this case?
How many PCG iterations does the problem take to converge to tol = 10−6 now?
[2 marks]
(f) Repeat the experiment from (e) with different values of the dif- fusion coefficients. Solve the problem (4) with μx = 0.1 and μx = 0.01, while keeping the other value at μy = 1. Solve the problem using PCG with the same ILU-preconditioner as before with a dropout tolerance of ε = 0.1. Plot the two respective solu- tions and the respective number of CG iterations. What do you observe?
[5 marks]
3. General guidance and study support
The MS Teams group for COMP53**M Scientific Computation will be used for general support for this assignment. If your question would reveal parts of the answer to any problem, please send a private message to the module leader on MS Teams instead. You can also use the tutorial sessions to ask questions about coursework.
4. Assessment criteria and marking process
Assessment marks and feedback will be available on Minerva within
three weeks of the submission deadline. Late submissions are allowed 7

within 14 days of the original deadline providing that a request for an extension is submitted before the deadline. Standard late penalties apply for submissions without approved extensions.
5. Presentation and referencing
When writing mathematical formulas, use similar notation and sym- bols as during the lectures and tutorials. Hand-written sections for mathematical notation are acceptable but need to be clearly readable.
You may assume theorems and other results that have been presented during lectures and tutorials as known. Any other theorems need to be cited using standard citation practice.
6. Submission requirements
This is an individual piece of work. Submit your answers through Tur- nitin as one PDF document (generated either in Word or with LaTeX). You may use hand-written and scanned pages for mathematical formu- las, but these need to be clearly legible and the document must contain at least some typeset text or Turnitin will reject it. All submissions will be checked for academic integrity.
7. Academic misconduct and plagiarism
Academic integrity means engaging in good academic practice. This involves essential academic skills, such as keeping track of where you find ideas and information and referencing these accurately in your work.
By submitting this assignment you are confirming that the work is a true expression of your own work and ideas and that you have given credit to others where their work has contributed to yours.
8. Assessment/marking criteria grid
Total number of marks is 40, divided as follows:
Exercise 1 (One-dimensional Burgers equation): 20 marks
Exercise 2 (Anisotropic diffusion and conjugate gradient): 20 marks
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:CAN201 代做、代寫 Python語言編程
  • 下一篇:代寫COM6471、代做 java 語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美成人免费观看| 国产日韩精品在线观看| 狠狠88综合久久久久综合网| 麻豆久久婷婷| 国产主播精品在线| 中文精品视频一区二区在线观看| 亚洲人午夜精品免费| 亚洲精品色图| 久久国产一区| 国产精品女人久久久久久| 亚洲三级免费电影| 美女福利精品视频| 国产美女精品视频免费观看| 国产精品揄拍500视频| 国产精品揄拍500视频| 国产精品永久免费在线| 欧美国产丝袜视频| 欧美乱人伦中文字幕在线| 欧美日韩中文字幕在线视频| 国产一区导航| 亚洲天堂av图片| 久久久女女女女999久久| 裸体素人女欧美日韩| 欧美一级在线视频| 欧美激情成人在线| 欧美怡红院视频| 国产毛片精品国产一区二区三区| 亚洲精品国产精品国产自| 亚洲欧洲日本专区| 免费高清在线一区| 亚洲精品少妇网址| 久久久久久综合网天天| 国产女主播在线一区二区| 久热综合在线亚洲精品| 一区免费在线| 夜夜嗨av一区二区三区四区| 久久久视频精品| 影音先锋中文字幕一区二区| 欧美性猛交一区二区三区精品| 久久国产精品一区二区三区| 国产亚洲一区精品| 国产精品久久久久久久久久妞妞| 国产精品狼人久久影院观看方式| 久久国产精品亚洲va麻豆| 亚洲国产精品www| 国产精品日产欧美久久久久| 欧美风情在线| 国产精品三级视频| 国语自产精品视频在线看8查询8| 久久精品视频在线免费观看| 久久成人综合视频| 久久综合伊人77777麻豆| 亚洲国产一成人久久精品| 久久精品动漫| 精品成人在线| 一本大道久久a久久精品综合| 欧美一区二视频在线免费观看| 欧美精品久久久久久| 国产欧美日韩不卡免费| 香蕉精品999视频一区二区| 伊人久久大香线蕉综合热线| 亚洲精品久久久久中文字幕欢迎你| 欧美午夜精品久久久| 亚洲精品综合久久中文字幕| 蜜桃av综合| 国产亚洲精品久久久久动| 欧美福利一区二区三区| 久久久欧美精品| 亚洲精品在线观看视频| 国产精品日韩一区二区三区| 久久精品国产一区二区三| 国内久久精品| 欧美丝袜一区二区三区| 美腿丝袜亚洲色图| 久久综合网色—综合色88| 一区二区高清视频| 欧美二区视频| 久久久综合网站| 久久一区二区精品| 黄色影院成人| 欧美视频日韩视频在线观看| 一本色道久久88综合亚洲精品ⅰ| 亚洲老板91色精品久久| 99精品热视频只有精品10| 亚洲综合精品四区| 亚洲黄色在线观看| 亚洲人成小说网站色在线| 亚洲夜晚福利在线观看| 亚洲午夜未删减在线观看| 久久99伊人| 欧美一级在线视频| 你懂的一区二区| 久久噜噜亚洲综合| 久久久999精品免费| 欧美激情一区二区三区全黄| 欧美日韩一区二区视频在线观看| 欧美精品手机在线| 久久久久久色| 亚洲综合国产激情另类一区| 国产精品女主播一区二区三区| 亚洲毛片一区二区| 欧美在线国产精品| 国产精品久久久久aaaa| 欧美午夜精品久久久久久人妖| 亚洲欧美国产另类| 亚洲一区二区三区视频| 麻豆视频一区二区| 亚洲字幕在线观看| 亚洲欧洲免费视频| 伊人久久婷婷色综合98网| 国产精品热久久久久夜色精品三区| 亚洲一二三区在线观看| 欧美va日韩va| 99爱精品视频| 亚洲小视频在线观看| 欧美1区视频| 国产精品igao视频网网址不卡日韩| 国产欧美一级| 一本色道婷婷久久欧美| 欧美日韩国产影片| 麻豆成人小视频| 欧美日韩一区二区三区免费| 欧美日韩aaaaa| 欧美在线观看视频在线| 国产一区二区精品| 欧美精品久久一区| 国产精品久久久久久久久久免费| 亚洲黄色小视频| 亚洲国产欧美国产综合一区| 日韩视频一区| 欧美在线3区| 国产精品久久婷婷六月丁香| 亚洲国产裸拍裸体视频在线观看乱了| 亚洲欧美国产视频| 国产精品免费看久久久香蕉| 美女脱光内衣内裤视频久久网站| 日韩一级大片| 国产欧美日韩激情| 一区二区视频免费完整版观看| 在线播放中文一区| 久久国产精品99精品国产| 欧美国产欧美综合| 国产精品久久久久高潮| 亚洲欧美色一区| 欧美高清视频免费观看| 欧美日韩不卡视频| 欧美日韩日本视频| 欧美精品亚洲| 欧美日韩日本视频| 欧美搞黄网站| 欧美日韩色综合| 久久夜色精品国产欧美乱| 亚洲愉拍自拍另类高清精品| 午夜一级久久| 最新精品在线| 一本大道久久a久久综合婷婷| 亚洲激情午夜| 久久免费视频网| 先锋影音网一区二区| 欧美成人一品| 午夜精品剧场| 久久精品国产久精国产爱| 欧美精品v日韩精品v国产精品| 欧美精品v国产精品v日韩精品|