日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

INT305 代做、代寫 Python 語言編程

時間:2023-12-10  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assessment Lab
INT305 – ASSESSMENT 2
Assessment Number 2 Contribution to Overall Marks 15% Submission Deadline 08/12/2023
Assessment Objective
This assessment aims at evaluating students’ ability to exploit the deep learning knowledge, which is accumulated during lectures, and after-class study, to analyze, design, implement, develop, test and document the images classification using CNN framework. The assessment will be based on the Pytorch software.
General Guidelines
1. The descriptions in the Problem Specifications are required to be analyzed with mathematic equations, combined with the explanations of all elements in each equation.
2. The modified parts of the source codes are required to include in the report.
3. The final classification performance that you obtain should be reported in the lab report. Meanwhile, the screenshots of the final performance results are also required in the report.
4. For the final performance results that you obtained, the numeric quantitative results are required. In addition, is also important to include some subjective image examples in the report.
5. Students need to conduct the coding and experiment all by yourself. The obtained results cannot be shared, and each student should analyze the results and write the report individually.
          
INT305 Assessment Lab
Image Object Classification (CIFAR-10)
Overall Description:
This lab is to use the Pytorch software and CNN (Convolutional Neural Network) framework for image object classification. Image classification aims to predict the category of object in an image (one image can only have one object in it). It has attracted much attention within the computer vision community in recent years as an important component for computer vision applications, such as self-driving vehicles, video surveillance and robotics. It is also the foundation of other computer vision research topics, such as object detection and instance segmentation.
CNN is a framework with both feature extraction and classification using deep convolutional neural network. A typical CNN pipeline is shown below.
Figure 1. CNN image classification pipeline.
The Dataset we will use is CIFAR-10 dataset, it contains 60000 **x** colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The followings are examples of CIFAR-10 dataset.
   
INT305
Assessment Lab
 Problem Specifications:
Figure 2. Examples of CIFAR-10 dataset.
 1. Please describe the 2 key components in the CNN framework: the convolutional kernel and the loss functions used in the framework. (20%)
2. Please train (or fine-tune) and test the framework on CIFAR-10 and report the final accuracy performance that you have achieved. Please also report some well classified and misclassified images by including the images and corresponding classification confidence value. (40%).
3. Propose your own method to further improve the classification performance or reduce the model size. You need also compare different methods with the performance you obtained and explain why. The final classification accuracy is not the most important part, you may better refer to some latest published papers and code these state of the art methods to improve the performance. The explanation and analysis of your adopted method is highly related to your final score. (40%)

INT305 Assessment Lab Environment Preparation:
1 Install Anaconda
1.1 Install Anaconda on Windows
Anaconda is open-source software that contains Jupyter, spyder, etc that is used for large data processing, data analytics, heavy scientific computing.
Conda is a package and environment management system that is available across Windows, Linux, and MacOS, similar to PIP. It helps in the installation of packages and dependencies associated with a specific language like python, C++, Java, Scala, etc. Conda is also an environment manager and helps to switch between different environments with just a few commands.
Step 1: Visit this website https://www.anaconda.com/products/individual-d and download the Anaconda installer.
Step 2: Click on the downloaded .exe file and click on Next.
Step 3: Agree to the terms and conditions.
   
INT305 Assessment Lab
 Step 4: Select the installation type.
 Step 5: Choose the installation location.

INT305 Assessment Lab
 Step 6: Now check the checkbox to add Anaconda to your environment Path and click Install.
This will start the installation.
Step 7: After the installation is complete you’ll get the following message, here click on Next.
 
INT305 Assessment Lab
 Step 8: You’ll get the following screen once the installation is ready to be used. Here click on Finish.
Verifying the installation:
Now open up the Anaconda Power Shell prompt and use the below command to check the conda version:
coda -V
If conda is installed successfully, you will get a message as shown below:
 
INT305 Assessment Lab
 1.2 Install Anaconda on Linux
Prerequisites
Firstly, open terminal on your Ubuntu system and execute the command mentioned below to update packages repository:
sudo apt update
Then install the curl package, which is further required for the downloading the installation script.
sudo apt install curl -y
Step 1 – Prepare the Anaconda Installer
Now I will go to the /tmp directory and for this purpose we will use cd command. cd /tmp
Next, use the curl command line utility to download the Anaconda installer script from the official site. Visit the Anaconda installer script download page to check for the latest versions. Then, download the script as below:
curl --output anaconda.sh https://repo.anaconda.com/archive/Anaconda3- 2021.05-Linux-x86_64.sh
To check the script SHA-256 checksum, I will use this command with the file name, though this step is optional:
sha256sum anconda.sh
Output:
25e3ebae8**5450ddac0f5c93f89c467 anaconda.sh

INT305 Assessment Lab Check if the hash code is matching with code showing on download page.
Step 2 – Installing Anaconda on Ubuntu
Your system is ready to install Anaconda. Let’s move to the text step and execute the Anaconda installer script as below:
bash anaconda.sh
Follow the wizard instructions to complete Anaconda installation process. You need to provide inputs during installation process as described below:
01. Use above command to run the downloaded installer script with the bash shell.
02. Type “yes” to accept the Anaconda license agreement to continue.
03. Verify the directory location for Anaconda installation on Ubuntu 20.04 system. Just hit Enter to continue installer to that directory.
04. Type “yes” to initialize the Anaconda installer on your system.
05. You will see the below message on successful Anaconda installation on Ubuntu 20.04 system.
        
INT305 Assessment Lab
 The Anaconda Installation Completed Sucessfully on your Ubuntu system. Installer added the environment settings in .bashrc file. Now, activate the installation using following command:
source ~/.bashrc
Now we are in the default base of the programming environment. To verify the installation we will open conda list.
conda list
Output:
# packages in environment at /home/tecadmin/anaconda3:
#
# Name Version _ipyw_jlab_nb_ext_conf 0.1.0
Build Channel py38_0
main
  pyhd3eb1b0_0
       py38_0
        py38_0
         py38_0
   pyhd3eb1b0_1
py38h06a4308_1
py_0
_libgcc_mutex alabaster anaconda anaconda-client anaconda-navigator anaconda-project anyio
appdirs
 0.1
 0.7.12
2021.05
  1.7.2
  2.0.3
  0.9.1
2.2.0 1.4.4
2 Install and configure PyTorch on your machine.
First, you'll need to setup a Python environment.
Open Anaconda manager via Start - Anaconda3 - Anaconda PowerShell Prompt and test your versions:
You can check your Python version by running the following command: python –-version
You can check your Anaconda version by running the following command: conda –-version
Now, you can install PyTorch package from binaries via Conda. 1 Navigate to https://pytorch.org/.
  
INT305 Assessment Lab
Select the relevant PyTorch installation details: •PyTorch build – stable.
•Your OS
•Package – Conda •Language – Python •Compute Platform – CPU.
 2 Open Anaconda manager and run the command as it specified in the installation instructions.conda install pytorch torchvision torchaudio cpuonly -c pytorch

INT305 Assessment Lab
 3 Confirm and complete the extraction of the required packages.
 Let’s verify PyTorch installation by running sample PyTorch code to construct a randomly initialized tensor.

INT305 Assessment Lab 4 Open the Anaconda PowerShell Prompt and run the following command.
python
import torch
x = torch.rand(2, 3) print(x)
The output should be a random 5x3 tensor. The numbers will be different, but it should look similar to the below.
 References
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代做ECM2418、代寫 java,Python 程序設計
  • 下一篇:CAN201 代做、代寫 Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲美女尤物影院| 亚洲免费在线观看视频| 欧美bbbxxxxx| 亚洲自拍偷拍色片视频| 欧美精品久久久久久久免费观看| 久久免费精品日本久久中文字幕| 国产精品mv在线观看| 久久精品国产99国产精品澳门| 久久中文字幕导航| 欧美刺激午夜性久久久久久久| 欧美日韩精品综合| 久久精品国产欧美激情| 国产精品va在线播放我和闺蜜| 国产有码在线一区二区视频| 欧美日韩国产成人在线观看| 狠狠色狠狠色综合| 亚久久调教视频| 欧美三级视频在线观看| 亚洲精品中文字幕女同| 亚洲天堂成人| 国产一区二区三区久久精品| 亚洲在线观看免费| 欧美高清自拍一区| 国内一区二区三区| 国内视频一区| 国内成人在线| 欧美综合国产精品久久丁香| 亚洲高清视频在线| 精品不卡一区二区三区| 91久久嫩草影院一区二区| 欧美日韩中文字幕日韩欧美| 久久精品视频免费观看| 免费在线亚洲欧美| 欧美久久久久免费| 国产精品日韩欧美一区二区| 欧美激情国产高清| 美女黄色成人网| 国产欧美日韩一区| 葵司免费一区二区三区四区五区| 亚洲国产专区| 99pao成人国产永久免费视频| 欧美日韩一区在线观看| 在线欧美三区| 国产精品免费网站| 亚洲一区二区网站| 久久久精品一区二区三区| 另类国产ts人妖高潮视频| 欧美精品一区二区三| 久久免费偷拍视频| 日韩一区二区精品在线观看| 午夜日韩视频| 欧美在线视频一区二区三区| 亚洲一区二区三区涩| 欧美性片在线观看| 久久人人爽爽爽人久久久| av成人激情| 日韩小视频在线观看专区| 亚洲午夜精品一区二区| 久久国产精彩视频| 欧美wwwwww| 亚洲日本va午夜在线电影| 欧美一区二区视频在线| 久久精品人人做人人爽电影蜜月| 裸体歌舞表演一区二区| 亚洲视频在线观看三级| 欧美午夜电影一区| 一区二区三区精品| 欧美精品在欧美一区二区少妇| 亚洲国产欧美日韩精品| 亚洲视频电影图片偷拍一区| 欧美国产日韩一区二区| 欧美色道久久88综合亚洲精品| 亚洲一区二区伦理| 亚洲精品在线二区| 亚洲片国产一区一级在线观看| 久久久亚洲人| 国产精品久久久久影院亚瑟| 久久伊伊香蕉| 久久成人av少妇免费| 亚洲第一精品在线| 亚洲国产日韩综合一区| 亚洲国产va精品久久久不卡综合| 亚洲色图在线视频| 伊人精品久久久久7777| 欧美成人免费网站| 国产麻豆视频精品| 国产午夜久久| 老司机免费视频一区二区三区| 在线免费观看视频一区| 亚洲天天影视| 这里只有精品视频在线| 欧美一区日本一区韩国一区| 国产精品一区视频网站| 卡一卡二国产精品| 麻豆精品一区二区av白丝在线| 久久久成人精品| 欧美日韩另类在线| 亚洲综合大片69999| 一本一本大道香蕉久在线精品| 999亚洲国产精| 麻豆久久精品| 久久中文在线| 欧美日韩午夜剧场| 男女精品视频| 欧美色大人视频| 在线观看欧美亚洲| 亚洲综合国产精品| 夜夜爽夜夜爽精品视频| 美女久久一区| 亚洲精品乱码久久久久久日本蜜臀| 亚洲伦理自拍| 欧美韩国日本综合| 在线成人黄色| 国产精品亚洲一区| 亚洲国产高清高潮精品美女| 久久精品国产欧美激情| 欧美日在线观看| 亚洲一区二区三区在线| 亚洲国产欧美在线人成| 国产午夜精品一区二区三区欧美| 欧美成人综合| 亚洲开发第一视频在线播放| 亚洲一区二区三区四区视频| 亚洲视频在线观看一区| 国产精品家教| 国产日韩欧美在线视频观看| 韩日精品中文字幕| 欧美另类69精品久久久久9999| 亚洲欧美日韩精品久久奇米色影视| 亚洲神马久久| 国产午夜精品久久久久久免费视| 韩日午夜在线资源一区二区| 国产综合在线视频| 国产一区二区精品久久| 欧美成人午夜激情| 亚洲永久网站| 欧美麻豆久久久久久中文| 欧美中文在线观看| 国产一区二区福利| 免费在线亚洲| 久久久www成人免费毛片麻豆| 亚洲欧美视频在线观看视频| 韩国一区二区在线观看| 亚洲视频一区在线观看| 国产日产欧产精品推荐色| 毛片av中文字幕一区二区| 欧美.com| 中文亚洲视频在线| 免播放器亚洲一区| 蜜桃久久精品乱码一区二区| 午夜视频一区在线观看| 国产精品美女视频网站| 国产美女精品在线| 国产精自产拍久久久久久| 欧美人与禽猛交乱配| 国产欧美一区二区三区久久人妖| 欧美一区二区在线播放| 国产一区视频在线观看免费| 国产日韩精品一区二区三区| 亚洲最新中文字幕| 午夜精品久久99蜜桃的功能介绍| 亚洲看片免费| 欧美在线亚洲综合一区| 久久久99久久精品女同性|