日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫DAT 560M、代做R編程語言

時間:2023-12-09  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 1 -
DAT 560M: Big Data and Cloud Computing
Fall 2023, Mini B
Homework #4
INSTRUCTIONS
1. This is an individual assignment. You may not discuss your approach to solving these
questions with anyone, other than the instructor or TA.
2. Please include only your Student ID on the submission.
3. The only allowed material is:
a. Class notes
b. Content posted on Canvas
c. Utilize ONLY the codes we practice. Anything beyond will not get any point!
4. You are not permitted to use other online resources.
5. The physical submission is due by the next lab.
6. There will be TA office hours. See the schedule on Canvas.
ASSIGNMENT
In this assignment, we are going to practice Spark on a file named loans.csv and the file is located
in our database. In case you don’t have the file, you can get it from the dataset folder on the server.
http://server-ip/dataset/loans.csv
This dataset has information about loans distributed to poor and financially excluded people
around the world by a company called Kiva. There are a few number of columns in the dataset
and we would like to do an analysis on that by pyspark. Please answer each question and provide
a screenshot.
Part ** Initialize Spark (5 pts)
** Start the PySpark engine and load the file. This homework is a little bit complex and its
better that we assign more resources. Then, when assigning your engine, you can assign
all available CPU cores on your machine to the Spark to perform faster. To do that, just
simply put local[*] instead of local (look at the following screenshot). If it crashes or
doesn’t work properly, you are more than welcome to go back to the normal initialization
process. (2 pts)
DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 2 -
2- Get to know the dataset and do a preliminary examination (for example type of columns,
summary, …) (2 pts)
3- Here, we have two identifier for the country of the loan receiver, country, and
country_code and so one is enough. Then please drop country_code. (1 pts)
Part 2- Data analysis (50 pts)
4- Find the three most loan awarded sector when the loan amount is larger than 1000. (5 pts)
5- For the top sector you found in Q4, list 6 most used activities. (5 pts)
6- Find the number of given loans per year. For that, use the year from posted_time. You
may add a new column called “year”. (5 pts)
7- Using SQL syntax, list the number of loans per sector in decreasing order where the
countries are the 3 top countries in terms of the number of received loans. (10 pts)
8- Find the top 20 countries in terms of the total loan amount they have received where the
use of the loan include the word “stock”. You may use SQL. (5 pts)
9- Do a wordcount on the “use” column. For that, consider all lower case. If you can, it’s
great to remove stopwords and then do the wordcount. It’s OK if you don’t know how to
do so. (10 pts)
10- Group the loans into 5 categories. If the loan amount is equal or larger than 50000, call it
“super large”. If less but larger or equal to 10000, call it “large”. If less but larger or
equal to 5000, call it “medium”. If less but larger or equal to 1000, call it “small”. If less,
call it “tiny”. Then, find the number of given loans to each category per gender. For
gender, only consider “male” or “female”. (10 pts)
Part 3- Feature engineering (10 pts)
1** Let’s find how many people are involved in each loan application. To find it out, look at
gender column. You can see sometimes it is one value, and sometimes more than one.
Count it for each loan and add it to the dataframe. (10 pts)
DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 3 -
Part 4- Machine learning (35 pts)
12- Now let’s focus only on Retail, Agriculture, and Food sectors the remove the rest of the
rows (10 pts).
13- We like to predict the loan_amount based on sector, country, term_in_months, year, and
the new attribute you added in Q11 and drop the rest of the columns. (5 pts)
14- Prepare your data to do a prediction task. We are interested in predicting the loan amount
based on the rest of the features. (10 pts)
15- Perform a regression task for and find the Mean Squared Error and R-square of the model
(80% training, 20% testing) (10 pts). 
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:CSCI 2122代寫、代做C++設計程序
  • 下一篇:代寫ISOM 2007、代做 Python 程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲国产中文字幕在线观看| 国产精品国产福利国产秒拍| 国内外成人在线视频| 欧美日韩视频专区在线播放| 国产午夜精品久久久| 亚洲一级黄色片| 国产欧美另类| 欧美一区二区网站| 香蕉久久一区二区不卡无毒影院| 亚洲成人在线网| 在线电影欧美日韩一区二区私密| 国产一区二区毛片| 亚洲图片在线| 国语自产偷拍精品视频偷| 欧美刺激性大交免费视频| 久久久国产精彩视频美女艺术照福利| 欧美日韩精品不卡| 久久精品视频播放| 亚洲日产国产精品| 久久久久天天天天| 欧美成人第一页| 这里只有精品在线播放| 久久亚洲精品中文字幕冲田杏梨| 欧美a级片网站| 欧美午夜在线一二页| 暖暖成人免费视频| 国产精品一级二级三级| 香蕉成人伊视频在线观看| 亚洲韩国精品一区| 久久婷婷久久一区二区三区| 免费人成网站在线观看欧美高清| 亚洲精品免费观看| 国产一区二区三区久久悠悠色av| 在线不卡免费欧美| 一区二区三区四区五区精品视频| 国内精品写真在线观看| 亚洲黄色在线看| 亚洲国产精品传媒在线观看| 狠狠做深爱婷婷久久综合一区| 久久精品一二三区| 另类欧美日韩国产在线| 国产午夜亚洲精品不卡| 欧美人在线观看| 欧美日韩喷水| 欧美成年视频| 亚洲私拍自拍| 国产美女精品视频| 亚洲欧洲99久久| 欧美自拍偷拍午夜视频| 久久免费高清| 久久久噜噜噜久久中文字免| 久久不见久久见免费视频1| 国产精品亚洲美女av网站| 99www免费人成精品| 国产精品一区二区三区四区| 日韩一区二区免费高清| 欧美在线视频免费| 日韩亚洲精品电影| 亚洲一区二区三区色| 久久av一区| 国产精品sss| 欧美日韩ab片| 国产午夜精品在线| 国内欧美视频一区二区| 国产精品自在在线| 国产精品九九久久久久久久| 久久精品国产v日韩v亚洲| 欧美精品麻豆| 国产一区在线免费观看| 欧美在线视频观看免费网站| 国产一区亚洲| 欧美激情网友自拍| 激情综合五月天| 欧美激情导航| 欧美四级剧情无删版影片| 亚洲麻豆av| 亚洲午夜日本在线观看| 免费视频一区| 影音先锋另类| 欧美视频免费在线观看| 国产精品爽爽ⅴa在线观看| 91久久久久久久久久久久久| 国产精品狼人久久影院观看方式| 欧美午夜理伦三级在线观看| 亚洲狠狠丁香婷婷综合久久久| 国产日本欧美一区二区| 久久精品国产亚洲高清剧情介绍| 亚洲国产成人精品久久久国产成人一区| 一区二区三区久久| 亚洲美女视频在线免费观看| 欧美精品在线极品| 久久久欧美精品sm网站| 开元免费观看欧美电视剧网站| 欧美三级网页| 欧美绝品在线观看成人午夜影视| 欧美日韩一区二区三区| 99一区二区| 在线观看91精品国产入口| 欧美一区二区三区婷婷月色| 欧美激情亚洲另类| 国产一区导航| 久久精品国产96久久久香蕉| 亚洲精选91| 亚洲黄色毛片| 激情欧美一区二区三区| 亚洲欧洲av一区二区| 国产视频精品va久久久久久| 欧美日韩三级电影在线| 一区二区三区高清视频在线观看| 亚洲欧美日韩在线综合| 精品成人国产在线观看男人呻吟| 日韩一级视频免费观看在线| 亚洲福利国产| 欧美国产亚洲另类动漫| 国产精品99一区二区| 欧美精品高清视频| 一区二区三区在线高清| 欧美人与禽猛交乱配| 亚洲人午夜精品| 国产精品日韩欧美综合| 中日韩午夜理伦电影免费| 国产精品久久久久久久第一福利| 欧美亚州一区二区三区| 国产一区成人| 久久精品国产99国产精品澳门| 海角社区69精品视频| 欧美日韩国产探花| 午夜精品久久久久久久99热浪潮| 亚洲第一精品福利| 亚洲私人影院在线观看| 欧美日韩国产专区| 久久精品国产2020观看福利| 香蕉精品999视频一区二区| 欧美视频一区二区| 久久av一区二区三区| 久久日韩精品| 久久噜噜亚洲综合| 在线观看免费视频综合| 久久久噜噜噜| 亚洲午夜国产一区99re久久| 国内不卡一区二区三区| 国产精品99免视看9| 亚洲国产精品传媒在线观看| 六月天综合网| 亚洲小说春色综合另类电影| 老司机凹凸av亚洲导航| 亚洲欧美一区二区三区极速播放| 国产精品久久久久久久久久尿| 午夜精品一区二区三区在线| 国产精品久久久久久五月尺| 欧美成人乱码一区二区三区| 激情视频亚洲| 亚洲国产成人porn| 亚洲国产国产亚洲一二三| 久久免费视频网| av不卡在线观看| 韩国亚洲精品| 午夜精品福利电影| 亚洲男人第一网站| 狠狠色噜噜狠狠狠狠色吗综合| 香蕉成人啪国产精品视频综合网| 久久www成人_看片免费不卡| 一区视频在线播放| 久久九九国产精品|