日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫DAT 560M、代做R編程語言

時間:2023-12-09  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 1 -
DAT 560M: Big Data and Cloud Computing
Fall 2023, Mini B
Homework #4
INSTRUCTIONS
1. This is an individual assignment. You may not discuss your approach to solving these
questions with anyone, other than the instructor or TA.
2. Please include only your Student ID on the submission.
3. The only allowed material is:
a. Class notes
b. Content posted on Canvas
c. Utilize ONLY the codes we practice. Anything beyond will not get any point!
4. You are not permitted to use other online resources.
5. The physical submission is due by the next lab.
6. There will be TA office hours. See the schedule on Canvas.
ASSIGNMENT
In this assignment, we are going to practice Spark on a file named loans.csv and the file is located
in our database. In case you don’t have the file, you can get it from the dataset folder on the server.
http://server-ip/dataset/loans.csv
This dataset has information about loans distributed to poor and financially excluded people
around the world by a company called Kiva. There are a few number of columns in the dataset
and we would like to do an analysis on that by pyspark. Please answer each question and provide
a screenshot.
Part ** Initialize Spark (5 pts)
** Start the PySpark engine and load the file. This homework is a little bit complex and its
better that we assign more resources. Then, when assigning your engine, you can assign
all available CPU cores on your machine to the Spark to perform faster. To do that, just
simply put local[*] instead of local (look at the following screenshot). If it crashes or
doesn’t work properly, you are more than welcome to go back to the normal initialization
process. (2 pts)
DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 2 -
2- Get to know the dataset and do a preliminary examination (for example type of columns,
summary, …) (2 pts)
3- Here, we have two identifier for the country of the loan receiver, country, and
country_code and so one is enough. Then please drop country_code. (1 pts)
Part 2- Data analysis (50 pts)
4- Find the three most loan awarded sector when the loan amount is larger than 1000. (5 pts)
5- For the top sector you found in Q4, list 6 most used activities. (5 pts)
6- Find the number of given loans per year. For that, use the year from posted_time. You
may add a new column called “year”. (5 pts)
7- Using SQL syntax, list the number of loans per sector in decreasing order where the
countries are the 3 top countries in terms of the number of received loans. (10 pts)
8- Find the top 20 countries in terms of the total loan amount they have received where the
use of the loan include the word “stock”. You may use SQL. (5 pts)
9- Do a wordcount on the “use” column. For that, consider all lower case. If you can, it’s
great to remove stopwords and then do the wordcount. It’s OK if you don’t know how to
do so. (10 pts)
10- Group the loans into 5 categories. If the loan amount is equal or larger than 50000, call it
“super large”. If less but larger or equal to 10000, call it “large”. If less but larger or
equal to 5000, call it “medium”. If less but larger or equal to 1000, call it “small”. If less,
call it “tiny”. Then, find the number of given loans to each category per gender. For
gender, only consider “male” or “female”. (10 pts)
Part 3- Feature engineering (10 pts)
1** Let’s find how many people are involved in each loan application. To find it out, look at
gender column. You can see sometimes it is one value, and sometimes more than one.
Count it for each loan and add it to the dataframe. (10 pts)
DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 3 -
Part 4- Machine learning (35 pts)
12- Now let’s focus only on Retail, Agriculture, and Food sectors the remove the rest of the
rows (10 pts).
13- We like to predict the loan_amount based on sector, country, term_in_months, year, and
the new attribute you added in Q11 and drop the rest of the columns. (5 pts)
14- Prepare your data to do a prediction task. We are interested in predicting the loan amount
based on the rest of the features. (10 pts)
15- Perform a regression task for and find the Mean Squared Error and R-square of the model
(80% training, 20% testing) (10 pts). 
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:CSCI 2122代寫、代做C++設計程序
  • 下一篇:代寫ISOM 2007、代做 Python 程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国内精品免费在线观看| 久久久久久尹人网香蕉| 极品少妇一区二区三区精品视频| 日韩视频在线观看一区二区| 欧美日韩国产成人| 欧美一区二区三区在线播放| 亚洲人成欧美中文字幕| 一区二区三区欧美成人| 国产精品久久| 欧美久色视频| 欧美日韩精品免费观看视一区二区| 久久免费高清视频| **网站欧美大片在线观看| 欧美3dxxxxhd| 久久av资源网| 亚洲女同性videos| 性欧美长视频| 国产精品免费观看在线| 欧美日韩一二区| 久久一区二区三区国产精品| 99re8这里有精品热视频免费| 国产精品青草久久久久福利99| 免费一区二区三区| 久热re这里精品视频在线6| 久久综合伊人77777麻豆| 一区二区三区四区五区在线| 欧美精品二区| 国产精品va在线| 日韩性生活视频| 国产日韩欧美综合在线| 亚洲欧美日本国产有色| 亚洲缚视频在线观看| 欧美另类变人与禽xxxxx| 国产亚洲欧美一区在线观看| 国产主播一区二区三区| 欧美日韩亚洲不卡| 亚洲精品亚洲人成人网| 国产伪娘ts一区| 亚洲一区二区三区午夜| 欧美成人亚洲成人| 亚洲高清免费在线| 亚洲福利国产| 欧美日韩国产另类不卡| 久久久精彩视频| 免费久久精品视频| 欧美日韩黄色一区二区| 亚洲欧美一区二区视频| 午夜日韩在线| 亚洲天堂激情| 亚洲欧美激情四射在线日| 性色av一区二区怡红| 欧美成人免费全部| 欧美亚洲免费| 午夜国产不卡在线观看视频| 欧美日本韩国| 亚洲影视中文字幕| 怡红院精品视频| 亚洲欧美在线网| 国产一区二区三区奇米久涩| 久久久99国产精品免费| 国产美女诱惑一区二区| 亚洲视频1区2区| 国产精品嫩草99av在线| 国产精品日韩欧美一区二区| 国产亚洲aⅴaaaaaa毛片| 亚洲靠逼com| 国产精品第十页| 欧美日韩视频一区二区三区| 亚洲欧美国产另类| 国产免费成人在线视频| 91久久久在线| 欧美日韩国产影院| 欧美激情成人在线| 1769国内精品视频在线播放| 亚洲激情第一区| 国产精品久久久久久久久动漫| 欧美国产日韩精品免费观看| 欧美日本免费一区二区三区| 国产精品美女久久久久av超清| 国语精品中文字幕| 激情综合中文娱乐网| 狠狠色狠狠色综合人人| 99国产麻豆精品| 欧美精品videossex性护士| 午夜视频在线观看一区二区| 欧美视频免费在线观看| 最新成人av在线| 免费成人在线视频网站| 国产一区二区三区四区五区美女| 久久在线91| 欧美一区二区三区四区在线观看地址| 国产精品亚洲一区二区三区在线| 亚洲高清视频中文字幕| 国产精品二区三区四区| 在线亚洲高清视频| 男女激情视频一区| 亚洲欧美国产毛片在线| 宅男噜噜噜66一区二区| 一区二区三区视频观看| 亚洲欧美一级二级三级| 久久琪琪电影院| 欧美精品色一区二区三区| 亚洲精品在线一区二区| 国内精品伊人久久久久av一坑| 国产亚洲精品bv在线观看| 欧美大片va欧美在线播放| 亚洲毛片一区| 在线欧美小视频| 在线视频欧美日韩| 国产精品女主播| 亚洲国产精品一区制服丝袜| 欧美一区二区三区在线观看视频| 狠狠v欧美v日韩v亚洲ⅴ| 久久久亚洲国产美女国产盗摄| 伊人久久大香线蕉综合热线| 蜜臀av性久久久久蜜臀aⅴ四虎| 久久久久久亚洲精品不卡4k岛国| 国产综合色精品一区二区三区| 亚洲激情中文1区| 欧美视频一区二区三区…| 久久综合精品一区| 国产自产女人91一区在线观看| 先锋影音一区二区三区| 亚洲日本欧美日韩高观看| 国产精品一区二区三区久久| 亚洲第一天堂无码专区| 亚洲小视频在线观看| 欧美日韩国产一区| 欧美三区美女| 欧美日韩裸体免费视频| 在线播放不卡| 一本不卡影院| 国产欧美日韩综合精品二区| 一区二区三区精品国产| 欧美精品一区二区三区在线播放| 久久精品国产77777蜜臀| 国产精品v欧美精品∨日韩| 久久成人国产| 亚洲国产精品久久久久秋霞影院| 亚洲欧美欧美一区二区三区| 国产视频一区在线| 欧美午夜免费影院| 亚洲免费视频在线观看| 欧美私人啪啪vps| 国产色综合天天综合网| 亚洲激情影视| 欧美色图五月天| 久久99在线观看| 国产欧美一区二区三区久久人妖| 一本一本a久久| 亚洲欧美日本日韩| 国产精品嫩草99av在线| 久久精品一区四区| 鲁大师影院一区二区三区| 国产精品视频第一区| 亚洲欧洲在线播放| 久久黄色小说| 9人人澡人人爽人人精品| 欧美午夜电影完整版| 国产精品一区二区三区观看| 国内精品视频久久| 亚洲欧美日本日韩| 欧美日韩在线免费| 国产一区二区三区精品欧美日韩一区二区三区|