日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CS 202代寫、代做Operating Systems設計

時間:2023-12-07  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 202: Advanced Operating Systems
University of California, Riverside
Lab #3: xv6 Threads
Due: 12/02/2022, Friday, 11:59 p.m. (Pacific time)
Overview
In this project, you will be adding kernel-level thread support to xv6. First, you will implement a new
system call to create a kernel-level thread, called clone(). Then, using the clone() system call, you will
build a simple user-level library consisting of thread_create(), lock_acquire() and
lock_release() for thread management. Finally, you will show these things work by using a user-level
multi-threaded test program.
Before your start:
1. In Makefile, set the number of CPUs to 3 (CPUS := 3). You may debug your code using one
CPU, your demo and submission should have CPUS := 3.
2. Replace kernel/trampoline.S with the one provided at the end of this document. This new
trampoline.S is also available to download from eLearn.
Background: xv6 virtual address space memory layout
In xv6, every process has its own page table that defines a virtual address space used in the user mode.
When a process enters the kernel mode, the address space is switched to the kernel’s virtual address space.
Because of this, each process has separate stacks for the kernel and user spaces (aka. user stack and kernel
stack). Also, in xv6, each PCB maintains separate objects to store process’s register values:
struct proc {
 …
struct trapframe *trapframe; // data page for trampoline.S
struct context context; // swtch() here to run process
trapframe stores registers used in the user space when entering the kernel mode. context is for registers
in the kernel space when context-switched to another process.
Below figure illustrates the layout of a process’s virtual address space in xv6-riscv.
2
In the virtual address space, user text, data, and user stack are mapped at the bottom. At top, you can see
two special pages are mapped: trampoline and trapframe, each has the size of PGSIZE (= 4096 bytes).
The trampoline page maps the code to transition in and out of the kernel. The trapframe page maps
the PCB’s trapframe object so that it is accessible by a trap handler while in the user space (see Chapter
4 of the xv6 book for more details).
The mapping of those pages to process’s address space is done when a process is created. In fork(), it
calls proc_pagetable() which allocates a new address space and then performs mappings of
trampoline and trapframe pages. For example, in proc_pagetable()
if(mappages(pagetable, TRAPFRAME, PGSIZE,
(uint64)(p->trapframe), PTE_R | PTE_W) < 0){ ...
This means mapping the kernel object p->trapframe to the user address space defined by pagetable
at the memory location of TRAPFRAME.
Part 1: Clone() system call
In this part, the goal is to add a new system call to create a child thread. It should look like:
int clone(void *stack);
clone() does more or less what fork() does, except for the following major differences:
• Address space: Instead of creating a new address space, it should use the parent's address space.
This means a single address space (and thus the corresponding page table) is shared between the
parent and all of its children. Do not create a separate page table for a child.
• stack argument: This pointer argument specifies the starting address of the user-level stack
used by the child. The stack area must have been allocated by the caller (parent) before the call to
clone is made. Thus, inside clone(), you should make sure that, when this syscall is returned, a
child thread runs on this stack, instead of the stack of the parent. Some basic sanity check is required
for input parameters of clone(), e.g., stack is not null.
3
Similar to fork(), the clone() call returns the PID of the child to the parent, and 0 to the newly-created
child thread. And of course, the child thread created by clone() must have its own PCB. The number of
child threads per process is assumed to be at most 20.
To manage threads, add an integer type thread_id variable to PCB. The value of thread_id is 0 for the
parent process and greater than 0 (e.g., 1, 2, …) for its child threads created using clone().
There are also some modifications required for the wait() syscall.
• wait(): The parent process uses wait() to wait for a child process to exit and returns the child’s
PID. Also, wait() frees up the child’s resources such as PCB, memory space, page table, etc. This
becomes tricky for child threads created by clone() because some resources are now shared
among all the threads of the same process. Therefore, if the child is a thread, wait() must
deallocate only the thread local resources, e.g., clearing PCB and freeing & unmapping its own
trapframe, and must not deallocate the shared page table.
For simplicity, we will assume that only parent process calls clone() – a thread created by clone()
does not call clone() to create another child thread. Also, assume that a process does not call clone()
more than 20 times (i.e., up to 20 child threads). It is fine to assume that only the parent uses wait() and
the parent is the last one to exit (i.e., after all of its child threads have exited). In addition, parent and child
do not need to share file descriptors. These assumptions will make the implementation a lot easier.
Tips:
• The best way to start would be creating clone() by duplicating fork(). fork() uses
allocproc() to allocate PCB, trapframe, pagetable, etc. However, clone() must not allocate a
separate page table because the parent and child threads should share the same page table. But each
thread still needs a separate trapframe. So, modify allocproc() or create a new function (e.g.,
allocproc_thread) for clone().
• In clone(), you need to specify the child’s user stack’s starting address (hint: trapframe->sp).
• In clone(), you should map each thread's
trapframe page to a certain user space with
no overlap. One simple way would be to map
it below the parent's trapframe location. For
example, see the figure on the right. If your
child thread has a thread ID (> 0), map it to
TRAPFRAME - PGSIZE * (thread ID).
So your first child thread's trapframe is
mapped at TRAPFRAME - PGSIZE, second
one at TRAPFRAME - PGSIZE * 2, and so
on. This can easily avoid overlap.
TRAPFRAME
trapframe
trapframe …
TRAPFRAME - PGSIZE
TRAPFRAME – 2*PGSIZE
Parent’s
Child thread 1
Child thread 2 …

4
• You also need to tell the kernel explicitly the new trapframe locations for your child threads.
Update kernel/trampoline.S as explained earlier. Then, at the end of usertrapret() in
kernel/trap.c, change
 ((void (*)(uint64))trampoline_userret)(satp);
to
 ((void (*)(uint64,uint64))trampoline_userret)(TRAPFRAME - PGSIZE * p->thread_id, satp);
for child threads. Normal processes (or thread ID == 0) should continue to use the default
TRAPFRAME address as follows:
 ((void (*)(uint64,uint64))trampoline_userret)(TRAPFRAME, satp);
• Trampoline (not trapframe) is already mapped by the parent and it can be shared with childs. So
you must not map it again to the page table when creating child threads (doing so will crash).
Only map the trapframe of each child (see mappages() function in the background).
• wait() uses freeproc() to deallocate child’s resources, so you will need to make appropriate
changes to freeproc().
Part 2: User-level thread library
You need to implement a user-level thread library in user/thread.c and user/thread.h. How to
create a library? Once you write user/thread.c, find the line starting with ULIB in Makefile and
modify as follows:
ULIB = $U/ulib.o $U/usys.o $U/printf.o $U/umalloc.o $U/thread.o
This will compile user/thread.c as a library and make it usable by other user-level programs that
include user/thread.h.
The first thread library routine to create is thread_create():
int thread_create(void *(start_routine)(void*), void *arg);
You can think of it as a wrapper function of clone(). Specifically, this routine must allocate a user stack
of PGSIZE bytes, and call clone() to create a child thread. Then, for the parent, this routine returns 0 on
success and -1 on failure. For the child, it calls start_routine() to start thread execution with the input
argument arg. When start_routine() returns, it should terminate the child thread by exit().
Your thread library should also implement simple user-level spin lock routines. There should be a type
struct lock_t that one uses to declare a lock, and two routines lock_acquire() and
lock_release(), which acquire and release the lock. The spin lock should use the atomic test-and-set
operation to build the spin lock (see the xv6 kernel to find an example; you can use GCC’s built-in atomic
operations like __sync_lock_test_and_set). One last routine, lock_init(), is used to initialize the lock
as need be. In summary, you need to implement:
struct lock_t {
uint locked;
};
5
int thread_create(void *(start_routine)(void*), void *arg);
void lock_init(struct lock_t* lock);
void lock_acquire(struct lock_t* lock);
void lock_release(struct lock_t* lock);
These library routines need be declared in user/thread.h and implemented in user/thread.c. Other
user programs should be able to use this library by including the header "user/thread.h".
Tips: In RISC-V, the stack grows downwards, as in most other architectures. So you need to give the
correct stack starting address to clone() for the allocated stack space.
How to test:
We will be using a simple program that uses thread_create() to create some number of threads. The
threads will simulate a game of frisbee, where each thread passes the frisbee (token) to the next thread. The
location of the frisbee is updated in a critical section protected by a lock. Each thread spins to check the
value of the lock. If it is its turn, then it prints a message, and releases the lock. Below shows the program
code. This program should run as-is. Do not modify. Add this program as user/lab3_test.c
#include "kernel/types.h"
#include "kernel/stat.h"
#include "user/user.h"
#include "user/thread.h"
lock_t lock;
int n_threads, n_passes, cur_turn, cur_pass;
void* thread_fn(void *arg)
{
int thread_id = (uint64)arg;
int done = 0;
while (!done) {
lock_acquire(&lock);
 if (cur_pass >= n_passes) done = 1;
 else if (cur_turn == thread_id) {
 cur_turn = (cur_turn + 1) % n_threads;
printf("Round %d: thread %d is passing the token to thread %d\n",
 ++cur_pass, thread_id, cur_turn);
 }
 lock_release(&lock);
 sleep(0);
}
return 0;
}
int main(int argc, char *argv[])
{
if (argc < 3) {
printf("Usage: %s [N_PASSES] [N_THREADS]\n", argv[0]);
 exit(-1);
}
6
n_passes = atoi(argv[1]);
n_threads = atoi(argv[2]);
cur_turn = 0;
cur_pass = 0;
lock_init(&lock);
for (int i = 0; i < n_threads; i++) {
thread_create(thread_fn, (void*)(uint64)i);
}
for (int i = 0; i < n_threads; i++) {
wait(0);
}
printf("Frisbee simulation has finished, %d rounds played in total\n", n_passes);
exit(0);
}
It takes two arguments, the first is the number of rounds (passes) and the second is the number of threads
to create. For example, for 6 rounds with 4 threads:
$ lab3_test 6 4
Round 1: thread 0 is passing the token to thread 1
Round 2: thread 1 is passing the token to thread 2
Round 3: thread 2 is passing the token to thread 3
Round 4: thread 3 is passing the token to thread 0
Round 5: thread 0 is passing the token to thread 1
Round 6: thread 1 is passing the token to thread 2
Frisbee simulation has finished, 6 rounds played in total!
$
Test your implementation with up to 20 threads on 3 emulated CPUs.
The Code and Reference Materials
Download a fresh copy of xv6 from the course repository and add the above-mentioned functionalities.
This Lab may take additional readings and through understanding of the concepts discussed in the
handout. Especially, Chapters 2 and 4 of the xv6 book discusses the essential background for this Lab.
What to submit:
Your submission should include:
(1) XV6 source code with your modifications (‘make clean’ to reduce the size before submission)
(2) Writeup (in PDF). Give a detailed explanation on the changes you have made (Part 1 & 2). Add
the screenshots of the frisbee program results for “lab3_test 10 3” and “lab3_test 21 20”. Also, a
brief summary of the contributions of each member.
(3) Demo video showing that all the functionalities you implemented can work as expected, as if you
were demonstrating your work in person. Demonstrate the results of “lab3_test 10 3” and
“lab3_test 21 20” on three CPUs. Your video should show that xv6 is running with three CPUs
(e.g., ‘hart 1 starting’ and ‘hart 2 starting’ messages when booting up).
7
Grades breakdown:
• Part I: clone() system call: 45 pts
o clone() implementation
o modifications to wait()
o other related kernel changes
• Part II: user-level thread library: 25 pts
o thread_create() routine
o spinlock routines
• Writeup and demo: 30 pts
Total: 100 pts
8
Appendix: kernel/trampoline.S
# # code to switch between user and kernel space. # # this code is mapped at the same virtual address # (TRAMPOLINE) in user and kernel space so that # it continues to work when it switches page tables.
#
# kernel.ld causes this to be aligned # to a page boundary. #
.section trampsec
.globl trampoline
trampoline:
.align 4
.globl uservec
uservec: # # trap.c sets stvec to point here, so # traps from user space start here, # in supervisor mode, but with a # user page table. # # sscratch points to where the process's p->trapframe is # mapped into user space, at TRAPFRAME. # # swap a0 and sscratch # so that a0 is TRAPFRAME csrrw a0, sscratch, a0
 # save the user registers in TRAPFRAME sd ra, 40(a0) sd sp, 48(a0) sd gp, 56(a0) sd tp, 64(a0) sd t0, 72(a0) sd t1, 80(a0) sd t2, 88(a0) sd s0, 96(a0) sd s1, 104(a0) sd a1, 120(a0) sd a2, 128(a0) sd a3, 136(a0) sd a4, 144(a0) sd a5, 152(a0) sd a6, 160(a0) sd a7, 168(a0) sd s2, 176(a0) sd s3, 184(a0) sd s4, 192(a0) sd s5, 200(a0) sd s6, 208(a0) sd s7, 216(a0) sd s8, 224(a0) sd s9, 2**(a0) sd s10, 240(a0) sd s11, 248(a0) sd t3, 256(a0) sd t4, 264(a0) sd t5, 272(a0) sd t6, 280(a0)
# save the user a0 in p->trapframe->a0 csrr t0, sscratch sd t0, 112(a0)
 # restore kernel stack pointer from p->trapframe->kernel_sp ld sp, 8(a0)
 # make tp hold the current hartid, from p->trapframe->kernel_hartid ld tp, **(a0)
 # load the address of usertrap(), p->trapframe->kernel_trap
9
 ld t0, 16(a0)
 # restore kernel page table from p->trapframe->kernel_satp ld t1, 0(a0) csrw satp, t1 sfence.vma zero, zero
 # a0 is no longer valid, since the kernel page # table does not specially map p->tf.
 # jump to usertrap(), which does not return jr t0
.globl userret
userret:
 # userret(TRAPFRAME, pagetable) # switch from kernel to user. # usertrapret() calls here. # a0: TRAPFRAME, in user page table. # a1: user page table, for satp.
 # switch to the user page table. csrw satp, a1 sfence.vma zero, zero
 # put the saved user a0 in sscratch, so we # can swap it with our a0 (TRAPFRAME) in the last step. ld t0, 112(a0) csrw sscratch, t0
 # restore all but a0 from TRAPFRAME ld ra, 40(a0) ld sp, 48(a0) ld gp, 56(a0) ld tp, 64(a0) ld t0, 72(a0) ld t1, 80(a0) ld t2, 88(a0) ld s0, 96(a0) ld s1, 104(a0) ld a1, 120(a0) ld a2, 128(a0) ld a3, 136(a0) ld a4, 144(a0) ld a5, 152(a0) ld a6, 160(a0) ld a7, 168(a0) ld s2, 176(a0) ld s3, 184(a0) ld s4, 192(a0) ld s5, 200(a0) ld s6, 208(a0) ld s7, 216(a0) ld s8, 224(a0) ld s9, 2**(a0) ld s10, 240(a0) ld s11, 248(a0) ld t3, 256(a0) ld t4, 264(a0) ld t5, 272(a0) ld t6, 280(a0)
# restore user a0, and save TRAPFRAME in sscratch csrrw a0, sscratch, a0
 # return to user mode and user pc. # usertrapret() set up sstatus and sepc. Sret
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP201、java設計程序代做
  • 下一篇:CMPT 489代做、Program Synthesis編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        韩国三级电影一区二区| 影音先锋久久精品| 欧美视频在线免费看| 亚洲国产精品久久精品怡红院| 久久久亚洲欧洲日产国码αv| 欧美午夜女人视频在线| 国产精品久久久久久久9999| 老司机午夜免费精品视频| 99riav1国产精品视频| 亚洲一品av免费观看| 麻豆av一区二区三区| 激情成人综合| 国产精品视频你懂的| 免费成人毛片| 久久国产精品毛片| 欧美激情性爽国产精品17p| 久久久av网站| 另类酷文…触手系列精品集v1小说| 欧美日韩精品免费观看视频| 99精品国产福利在线观看免费| 在线观看视频免费一区二区三区| 亚洲免费中文字幕| 美女诱惑一区| 狠狠色伊人亚洲综合成人| 韩国av一区二区三区四区| 欧美亚洲视频在线观看| 午夜精品久久久久| 欧美另类videos死尸| 模特精品裸拍一区| 欧美自拍偷拍| 欧美亚洲日本国产| 久久另类ts人妖一区二区| 在线观看不卡av| 欧美精品91| 国产婷婷一区二区| 欧美电影免费观看网站| 一色屋精品视频在线看| 国产日韩一区| 国产精品福利av| 亚洲欧美区自拍先锋| 欧美激情精品久久久久久久变态| 亚洲欧美日韩天堂| 久久久久久**毛片大全| 一区二区三区不卡视频在线观看| 在线播放不卡| 亚洲欧美视频在线| 国产精品久久久久久久久动漫| 亚洲精品在线免费观看视频| 亚洲美女视频在线免费观看| 最新国产の精品合集bt伙计| 国产伦精品一区二区三区视频黑人| 欧美一区免费视频| 亚洲精品国产日韩| 日韩视频免费观看| 久久香蕉国产线看观看av| 91久久精品国产91性色| 一本色道**综合亚洲精品蜜桃冫| 国产精品狼人久久影院观看方式| 亚洲视频在线视频| 久久九九99视频| 国产精品久久久久影院亚瑟| 国产老女人精品毛片久久| 欧美一区久久| 欧美精品亚洲精品| 激情欧美一区二区三区在线观看| 亚洲在线观看视频| 国产综合色产| 国产毛片一区二区| 亚洲黄一区二区| 欧美日本国产精品| 欧美国产日韩一区二区三区| 国产一区二区精品久久91| 国产女人aaa级久久久级| 一本色道久久综合亚洲精品不| 午夜精品福利在线观看| 欧美高清不卡在线| 欧美主播一区二区三区| 久久av一区| 久久爱www| 一区在线视频| 亚洲影视中文字幕| 国产一区二区三区视频在线观看| 国产性色一区二区| 国产亚洲精品自拍| 亚洲小少妇裸体bbw| 久久亚洲不卡| 国产精品国产三级国产普通话三级| 欧美国产日韩免费| 久久精品在这里| 亚洲一区二区免费在线| 午夜精品福利一区二区蜜股av| 国产精品一香蕉国产线看观看| 日韩一级网站| 伊人久久亚洲影院| 韩曰欧美视频免费观看| 国产欧美日韩视频一区二区| 亚洲精品一区在线观看| 极品日韩av| 国产精品一区二区三区久久久| 一区二区视频欧美| 一本大道久久精品懂色aⅴ| 狠狠干狠狠久久| 久久久久青草大香线综合精品| 亚洲美女福利视频网站| 亚洲精品久久久一区二区三区| 欧美一级理论性理论a| 亚洲综合大片69999| 在线不卡视频| 91久久久一线二线三线品牌| 国产女人水真多18毛片18精品视频| 欧美与黑人午夜性猛交久久久| 欧美国产日韩视频| 欧美一区二区私人影院日本| 国产欧美视频一区二区| 欧美日韩免费观看一区| 女人香蕉久久**毛片精品| 久久人人超碰| 一区二区三区在线视频免费观看| 久久久精品一品道一区| 亚洲国产精品久久精品怡红院| 91久久精品久久国产性色也91| 国产嫩草一区二区三区在线观看| 尤物在线观看一区| 在线欧美日韩精品| 国产精品久久一区主播| 性欧美大战久久久久久久免费观看| 久久尤物视频| 亚洲免费成人| 国产精品高清在线观看| 亚洲欧美一区二区三区在线| 亚洲福利视频三区| 欧美日韩在线一区二区| 欧美日韩精品免费| 亚洲日韩欧美视频| 国产精品一区二区三区免费观看| 午夜影视日本亚洲欧洲精品| 免费在线播放第一区高清av| 亚洲国产精品一区| 亚洲日本中文| 欧美激情一区在线观看| 免费看av成人| 欧美精品免费看| 久久综合色综合88| 一本大道av伊人久久综合| 国产精品极品美女粉嫩高清在线| 国产资源精品在线观看| 精品粉嫩aⅴ一区二区三区四区| 国产精品婷婷| 欧美四级在线观看| 一区二区成人精品| 久久av一区二区三区亚洲| 韩日欧美一区二区三区| 欧美性做爰毛片| 久久尤物电影视频在线观看| 欧美日韩国产一区二区三区| 欧美日韩系列| 国产精品久久久久久久久久ktv| 国产精品亚洲成人| 一区二区亚洲精品国产| 免费精品99久久国产综合精品| 亚洲国产成人不卡| 国产精品日韩久久久| 亚洲观看高清完整版在线观看| 亚洲乱码国产乱码精品精98午夜|