日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做EF5070、代寫c/c++編程設計

時間:2023-11-30  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Financial Econometrics (EF5070) 
1
Financial Econometrics (EF5070) 2023/2024 Semester A
Assignment 3
• The assignment is to be done individually.
• Your solution should consist of one single pdf file and one single R file.
• Clearly state your name, SIS ID, and the course name on the cover page of your pdf file.
• In your pdf file, indicate how you solved each problem and show intermediate steps. It
is advised to show numerical results in the form of small tables. Make your R code easyto-read. Use explanatory comments (after a # character) in your R file if necessary.
Overly lengthy solutions will receive low marks.
• You need to upload your solution (i.e., the one pdf file and the one R file) on the Canvas
page of the course (Assignments → Assignment 3). The deadline for uploading your
solution is 2 December, 2023 (Saturday), 11:59 p.m.
Financial Econometrics (EF5070) Dr. Ferenc Horvath
2
Exercise 1.
The file a3data.txt contains the daily values of a fictional total return index.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• Use the BDS test to determine whether the returns are realizations of i.i.d. random
variables.
• Plot the ACF of the returns and of the squared returns. Do these plots confirm your
conclusion which you obtained by using the BDS test?
• Based on the Akaike information criterion, fit an AR(p) model to the return time series
with w**1; ≤ 5. Check whether the model residuals are realisations of a white noise or not
by plotting the ACF of the residuals and of the squared residuals, and by performing
the BDS test on the residuals.
• Perform the RESET test, Keenan’s test, Tsay’s F test, and the threshold test to determine
whether the daily n.a.c.c. net returns indeed follow an AR(p) model, where p is equal
to the number of lags which you determined in the previous point based on the Akaike
information criteria. Is your conclusion (based on the four tests) regarding the validity
of an AR(p) model in accordance with your conclusions regarding whether the residuals
in the previous point are realisations of a white noise?
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?)
Financial Econometrics (EF5070) Dr. Ferenc Horvath
3
Exercise 2.
The file HSTRI.txt contains the Hang Seng Total Return Index (which is the major stock market
index of the Hong Kong Stock Exchange) values from 3 January, 19** to 22 September, 2023.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?) Is this result in accordance with the Efficient Market Hypothesis,
according to which (roughly speaking) returns are not predictable?
Financial Econometrics (EF5070) Dr. Ferenc Horvath
4
Exercise 3.
Consider again the daily n.a.c.c. net returns from Exercise 2.
• Calculate the standard deviation of the first 7**4 returns.
• Create a dummy variable for each observed return such that the dummy variable takes
the value of 1 if the absolute value of the return is greater than the previously
calculated standard deviation and it takes the value of zero otherwise.
• Build a neural network model where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
• Using the last 1000 observations, forecast whether the absolute value of the nextperiod return will be higher or not than the earlier calculated standard deviation.
Determine the mean absolute error of your forecast. (I.e., in how many percent of the
cases was your model forecast correct and in how many percent of the cases was it
incorrect?) Is this result in accordance with the concept of volatility clustering?
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫ecs36c 有向圖程序
  • 下一篇:PX390編程代做、C/C++程序語言代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲在线中文字幕| 国产精品久久波多野结衣| 美日韩免费视频| 国外成人性视频| 亚洲国产精品尤物yw在线观看| 欧美高清不卡在线| 亚洲一区二区三区四区中文| 欧美不卡激情三级在线观看| 亚洲电影欧美电影有声小说| 欧美日韩高清在线一区| 中文精品在线| 美日韩精品免费| 亚洲永久字幕| 国产综合一区二区| 免费观看30秒视频久久| 欧美国产专区| 国产一二精品视频| 欧美顶级少妇做爰| 国产一区二区福利| 国产麻豆一精品一av一免费| 亚洲国产精品一区二区www在线| 久久久久久电影| 欧美不卡在线视频| 免费成人高清| 国产精品久久久久久久久久免费看| 91久久久久久久久久久久久| 欧美午夜在线视频| 中文欧美日韩| 国产女主播一区二区| 国内精品免费在线观看| 亚洲激情婷婷| 欧美精品xxxxbbbb| 国产午夜精品久久| 你懂的国产精品永久在线| 国内一区二区在线视频观看| 国产伪娘ts一区| 国产精品一区免费在线观看| 亚洲激情精品| 亚洲一区三区在线观看| 亚洲三级观看| 一区二区三区久久久| 中文av一区特黄| 久久国产欧美日韩精品| 一区二区在线视频| 亚洲欧洲日产国码二区| 欧美性感一类影片在线播放| 久久婷婷久久| 国产色婷婷国产综合在线理论片a| 在线免费高清一区二区三区| 亚洲精品中文字幕在线| 午夜精品视频在线观看| 久久综合国产精品台湾中文娱乐网| 欧美一区日韩一区| 亚洲日本在线视频观看| 久久久www成人免费精品| 99视频精品免费观看| 黄色成人av网| 韩日精品视频| 麻豆精品视频在线| 国产精品久久中文| 欧美日韩综合精品| 麻豆九一精品爱看视频在线观看免费| 欧美三级电影网| 欧美一级久久| 亚洲视频视频在线| 欧美影院久久久| 国产农村妇女毛片精品久久莱园子| 欧美伊人久久久久久午夜久久久久| 一区二区三区日韩精品| 欧美日韩三区四区| 欧美精品麻豆| 国产精品久久久久国产精品日日| 激情综合久久| 国产精品热久久久久夜色精品三区| 欧美激情导航| 亚洲精选久久| 欧美日韩福利| 伊人激情综合| 夜久久久久久| 久久婷婷综合激情| 亚洲欧美一区在线| 亚洲一区二区三区免费视频| 欧美二区视频| 亚洲国产欧美一区二区三区同亚洲| 一本色道久久加勒比精品| 亚洲午夜激情免费视频| 久久久7777| aa级大片欧美三级| 国产精品99久久久久久白浆小说| 久久免费午夜影院| 精品成人一区二区| 久久综合中文字幕| 在线亚洲电影| 国产精品乱人伦一区二区| 亚洲欧美清纯在线制服| 欧美资源在线| 久久蜜桃资源一区二区老牛| 美女视频黄a大片欧美| 亚洲精选在线观看| 欧美激情综合五月色丁香小说| 欧美一区二区精美| 99国产精品| 亚洲韩国日本中文字幕| 国产精品丝袜久久久久久app| 欧美啪啪成人vr| 久久久99精品免费观看不卡| 亚洲乱码一区二区| 亚洲一区二区三区色| 久久精品一区| 欧美激情久久久| 伊人久久av导航| 黄色在线成人| 国产欧美日韩一区二区三区在线观看| 99re6热只有精品免费观看| 免费日韩精品中文字幕视频在线| 欧美网站大全在线观看| 亚洲乱码精品一二三四区日韩在线| 一区二区冒白浆视频| 国产精品高潮呻吟| 亚洲国产成人tv| 久久综合色婷婷| 国产精品都在这里| 国产精品久久久一本精品| 一区二区欧美日韩视频| 欧美日韩专区| 久久躁狠狠躁夜夜爽| 免费成人av| 欧美亚洲色图校园春色| 国产欧美视频一区二区三区| 一区二区三区国产精品| 久久精品欧美日韩精品| 欧美精品乱人伦久久久久久| 国产伦精品一区二区三区免费| 在线不卡a资源高清| 久久免费国产| 欧美天堂亚洲电影院在线播放| 久久婷婷久久一区二区三区| 久久国产一区二区三区| 午夜久久美女| 国产欧美日韩麻豆91| 国产日韩av一区二区| 亚洲视频每日更新| 亚洲一区影院| 蜜臀av性久久久久蜜臀aⅴ| 国产噜噜噜噜噜久久久久久久久| 欧美性猛交视频| 国产综合视频在线观看| 久久久夜夜夜| 欧美日韩国产二区| 一区二区三区四区在线| 狠狠综合久久av一区二区小说| 久久精品综合一区| 欧美性天天影院| 亚洲一区二区少妇| 免费观看成人鲁鲁鲁鲁鲁视频| 欧美一区二视频在线免费观看| 亚洲网站在线| 国产在线不卡视频| 在线观看日韩av| 国产伦精品一区二区三区在线观看| 欧美激情亚洲一区| 亚洲综合首页| 老司机凹凸av亚洲导航| 欧美日韩精品免费观看视频|