日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CSE 158、代做Python語言編程

時間:2023-11-18  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


CSE 158/258, DSC 256, MGTA 461, Fall 2023: Assignment 1

Instructions

In this assignment you will build recommender systems to make predictions related to video game reviews

from Steam.

Submissions will take the form of prediction files uploaded to gradescope, where their test set performance

will be evaluated on a leaderboard. Most of your grade will be determined by ‘absolute’ cutoffs;

the leaderboard ranking will only determine enough of your assignment grade to make the

assignment FUN.

The assignment is due Monday, Nov 20, though make sure you upload solutions to the leaderboard

regularly.

You should submit two files:

writeup.txt a brief, plain-text description of your solutions to each task; please prepare this adequately in

advance of the submission deadline; this is only intended to help us follow your code and does not need

to be detailed.

assignment1.py A python file containing working code for your solutions. The autograder will not execute

your code; this file is required so that we can assign partial grades in the event of incorrect solutions,

check for plagiarism, etc. Your solution should clearly document which sections correspond to

each task. We may occasionally run code to confirm that your outputs match submitted answers, so

please ensure that your code generates the submitted answers.1

Along with two files corresponding to your predictions:

predictions Played.csv, predictions Hours.csv Files containing your predictions for each (test) instance

(you should submit two of the above three files). The provided baseline code demonstrates how to

generate valid output files.

To begin, download the files for this assignment from:

https://cseweb.ucsd.edu/classes/fa23/cse258-a/files/assignment1.tar.gz

Files

train.json.gz 175,000 instances to be used for training. This data should be used for both the ‘play prediction’

and ‘time played prediction’ tasks. It is not necessary to use all observations for training, for example if

doing so proves too computationally intensive.

userID The ID of the user. This is a hashed user identifier from Steam.

gameID The ID of the game. This is a hashed game identifier from Steam.

text Text of the user’s review of the game.

date Date when the review was entered.

hours How many hours the user played the game.

hours transformed log2

(hours+1). This transformed value is the one we are trying to predict.

pairs Played.csv Pairs on which you are to predict whether a game was played.

pairs Hours.csv Pairs (userIDs and gameIDs) on which you are to predict time played..

baselines.py A simple baseline for each task, described below.

Please do not try to collect these reviews from Steam, or to reverse-engineer the hashing function I used to

anonymize the data. Doing so will not be easier than successfully completing the assignment. We will run

the code of any solution suspected of violating the competition rules, and you may be penalized

if your code does produce your submitted solution.

1Don’t worry too much about dependencies if importing non-standard libraries.

1

Tasks

You are expected to complete the following tasks:

Play prediction Predict given a (user,game) pair from ‘pairs Played.csv’ whether the user would play the

game (0 or 1). Accuracy will be measured in terms of the categorization accuracy (fraction of correct

predictions). The test set has been constructed such that exactly 50% of the pairs correspond to played

games and the other 50% do not.

Time played prediction Predict how long a person will play a game (transformed as log2

(hours + 1), for

those (user,game) pairs in ‘pairs Hours.csv’. Accuracy will be measured in terms of the mean-squared

error (MSE).

A competition page has been set up on Kaggle to keep track of your results compared to those of other

members of the class. The leaderboard will show your results on half of the test data, but your ultimate score

will depend on your predictions across the whole dataset.

Grading and Evaluation

This assignment is worth 22% of your grade. You will be graded on the following aspects. Each of the two

tasks is worth 10 marks (i.e., 10% of your grade), plus 2 marks for the written report.

• Your ability to obtain a solution which outperforms the leaderboard baselines on the unseen portion of

the test data (5 marks for each task). Obtaining full marks requires a solution which is substantially

better than baseline performance.

• Your ranking for each of the tasks compared to other students in the class (3 marks for each task).

• Obtain a solution which outperforms the baselines on the seen portion of the test data (i.e., the leaderboard). This is a consolation prize in case you overfit to the leaderboard. (2 mark for each task).

Finally, your written report should describe the approaches you took to each of the tasks. To obtain good

performance, you should not need to invent new approaches (though you are more than welcome to!) but

rather you will be graded based on your decision to apply reasonable approaches to each of the given tasks (2

marks total).

Baselines

Simple baselines have been provided for each of the tasks. These are included in ‘baselines.py’ among the files

above. They are mostly intended to demonstrate how the data is processed and prepared for submission to

Gradescope. These baselines operate as follows:

Play prediction Find the most popular games that account for 50% of interactions in the training data.

Return ‘1’ whenever such a game is seen at test time, ‘0’ otherwise.

Time played prediction Return the global average time, or the user’s average if we have seen them before

in the training data.

Running ‘baselines.py’ produces files containing predicted outputs (these outputs can be uploaded to Gradescope). Your submission files should have the same format.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP 340 Operating Systems
  • 下一篇:SEHH2042代做、代寫c++,Java編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美一区91| 136国产福利精品导航| 中日韩男男gay无套| 国产精品久久久一区二区| 亚洲精品123区| 狠狠色综合网站久久久久久久| 欧美大香线蕉线伊人久久国产精品| 国产亚洲精品久久飘花| 在线成人小视频| 亚洲国产经典视频| 欧美亚洲综合久久| 欧美屁股在线| 欧美视频一区二区在线观看| 国产精品女人久久久久久| 欧美亚洲三区| 国产精品人人做人人爽| 欧美大片一区| 久久精品国产69国产精品亚洲| 亚洲图片欧美午夜| 狠狠色狠狠色综合人人| 亚洲私人影吧| 亚洲欧美久久久久一区二区三区| 欧美日本免费一区二区三区| 亚洲成人在线视频网站| 欧美福利电影在线观看| 精品粉嫩aⅴ一区二区三区四区| 亚洲国产cao| 免费永久网站黄欧美| 亚洲欧美国产不卡| 亚洲欧美在线视频观看| 亚洲毛片在线免费观看| 欧美日韩mv| 国产精品视频午夜| 亚洲激情欧美| 狠狠色伊人亚洲综合成人| 亚洲一区免费观看| 激情欧美一区二区三区| 亚洲精品国精品久久99热一| 国产日产欧美a一级在线| 亚洲午夜精品视频| 国产精品一区二区你懂得| 国产美女一区二区| 欧美日韩国产一级片| 在线观看欧美黄色| 国产精品v欧美精品v日本精品动漫| 欧美激情第1页| 亚洲视频在线免费观看| 欧美日韩亚洲综合在线| 国产精品久久久久久亚洲调教| 美日韩精品免费观看视频| 亚洲免费在线观看| 麻豆成人91精品二区三区| 欧美日韩免费观看中文| 亚洲视频香蕉人妖| 亚洲精品视频中文字幕| 国产九九精品视频| 久久激情一区| 91久久精品一区二区别| 欧美金8天国| 美女脱光内衣内裤视频久久网站| 欧美一级一区| 亚洲视频欧洲视频| 亚洲免费网址| 亚洲一区二区三区高清不卡| 欧美一区网站| 国产精品成人一区二区三区夜夜夜| 亚洲欧美日韩天堂一区二区| 国产精品观看| 国产欧美日韩专区发布| 久久精品免费| 国产日韩精品在线观看| 999在线观看精品免费不卡网站| 亚洲午夜av| 欧美精品一区二区三| 麻豆精品国产91久久久久久| 欧美精品在线一区| 国产精品男人爽免费视频1| 136国产福利精品导航网址| 美女视频网站黄色亚洲| 亚洲精品视频在线播放| 国产欧美一区二区精品性| 欧美日一区二区三区在线观看国产免| 欧美综合国产| 亚洲视频网在线直播| 亚洲影视中文字幕| 国产一区美女| 影院欧美亚洲| 久久精品一区二区三区不卡牛牛| 久久色在线观看| 亚洲精品视频免费观看| 亚洲天天影视| 欧美精品国产精品日韩精品| 亚洲国产精品久久久久婷婷老年| 亚洲最新中文字幕| 欧美日韩精品一区视频| 亚洲成在人线av| 欧美成人免费播放| 国内一区二区三区| 午夜精品久久久久久久蜜桃app| 日韩午夜在线播放| 久久久www成人免费毛片麻豆| 欧美韩日一区二区| 亚洲欧美日韩在线高清直播| 激情久久久久久久久久久久久久久久| 欧美精品久久久久久久久老牛影院| 国自产拍偷拍福利精品免费一| 国产一区二区三区四区五区美女| 欧美日韩一区精品| 午夜一级久久| 亚洲欧美另类综合偷拍| 欧美色综合天天久久综合精品| 亚洲午夜一级| 一本色道久久99精品综合| 亚洲一区二区在线播放| 欧美精品久久久久久久久老牛影院| 在线日韩av永久免费观看| 韩国成人精品a∨在线观看| 免费看精品久久片| 国产精品日韩欧美一区| 在线观看成人小视频| 性色av香蕉一区二区| 久久不射网站| 亚洲国产免费| 亚洲精品国精品久久99热一| 国产精品毛片大码女人| 国内精品久久久久影院 日本资源| 亚洲第一天堂无码专区| 日韩视频在线一区二区| 久久久久久久激情视频| 国产精品久久久久久久9999| 国内揄拍国内精品少妇国语| 国产偷国产偷亚洲高清97cao| 亚洲一区二区三区精品动漫| 亚洲二区视频| 国产精品欧美日韩一区二区| 久久精品亚洲精品国产欧美kt∨| 久久福利精品| 国外成人性视频| 久久精品国产久精国产爱| 亚洲精品资源美女情侣酒店| 久久久精品一品道一区| 亚洲黄色有码视频| 国产精品一香蕉国产线看观看| 亚洲综合国产| 国产精品久久久久三级| 国产精品久久国产精麻豆99网站| 尤物网精品视频| 男女av一区三区二区色多| 欧美三区美女| av成人天堂| 欧美精选一区| 久久久欧美一区二区| 欧美午夜精品理论片a级大开眼界| 精品91久久久久| 亚洲人体一区| 国产精品视频导航| 亚洲欧美日韩国产另类专区| 欧美日韩国产一区二区三区地区| 欧美精品一区二区高清在线观看| 亚洲国产精品va在线看黑人动漫| 免费成人av资源网| 激情综合网址| 国产乱码精品一区二区三区av| 99热免费精品|